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Foreword by Jan Bosch

In 1968, a NATO-organized conference was held during which several terms central
to our field were introduced, including software component, software architecture
and software engineering. This conference can be viewed as a milestone in turning
the programming of software systems from a craft to a true engineering discipline.
Although we have not yet reached a level of proficiency that is on par with the
older engineering disciplines, enormous progress has been made in the last four
decades, allowing us to build software systems, even complete ecosystems, that go
far beyond the dreams of the first software engineers. This book marks a similar
milestone where the construction of mobile systems is moving from a craft to an
engineering discipline.

A key characteristic of any engineering discipline is that its professionals have
the ability to build and evolve systems that a layman would either not be capable
of or can only construct at a productivity level that is one or several orders of mag-
nitude lower. The software engineering professional combines a deep insight into
the fundamental principles underlying the discipline, such as modularity, compos-
ability, architecture, quality and user experience, as well as a detailed knowledge
of the strengths and limitations of the mechanical and hardware systems for which
the software is developed and the tools used to develop software.

Since a few months ago, my oldest son, age 9, is the proud owner of a Series 60
Nokia mobile phone. Interested in mathematics and computer games, his immediate
questions assorted to the ability to download software, arguably not productivity
applications but rather games, as well as the possibility to develop software for the
phone himself. Although our joint programming efforts have been limited to Python,
rather than Java and C++ as discussed in this book, reflecting on the discussions
with my son reinforced my realization to what extent and at what speed computing
is moving to the edge of the network, specifically to mobile devices. It is of course
a cliché, but that is because it’s true!

The trends of convergence and mobility have a profound impact on society. The
typical adoption pattern for new use cases, e.g. making a phone call, taking a
picture, listening to music or reading and sending email, consists of three phases.
At first, some use case is simply not feasible when using an integrated mobile
device. During the second stage, the use case becomes possible using a mobile
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device, but it is the second choice for the user, because the experience of use and
the associated cost are significantly behind the stationary or single purpose devices.
During the third stage, the specific use case matures and becomes the preferred
choice. An illustrative example is the basic phone call. Not available at all in most
of the western world until the early 1990s, mobile phones were initially used where
access to fixed phones was lacking and the importance of communication warranted
no delay. Today we see ubiquitous use of mobile phones and most would prefer
using a mobile phone even while standing next to a fixed phone. There are numerous
use cases going through the same three-staged adoption process including taking and
watching pictures as well as video, sending and receiving messages, including SMS,
email and instant messaging, gaming, access to enterprise applications and business
processes, surfing and searching the internet, watching television, participating in
online communities and, in general, interacting with the increasingly fusing digital
and physical worlds.

Summarizing, we see convergence, i.e. the integration of use cases earlier reserved
for single purpose devices, as a very strong trend set to continue. Second, mobility,
i.e. transferring stationary and nomadic use cases to true mobile contexts, is freeing
individuals from the confines of specific locations, e.g. an office desk, and specific
contexts, e.g. sitting in an airport lounge with a laptop computer in, well, one’s lap.
The ability to perform use cases when and wherever is not just good for productivity
in enterprise contexts, but also hugely satisfying from a personal perspective. The
third trend is that a mobile device is personal and defining the identity of its user to
an extent that goes far beyond desktop or laptop computers. Consequently, we see
mobile devices differ in size, form factor, input and output devices, available built-in
hardware, e.g. GPS, wireless LAN and Bluetooth, external accessories, interaction
with external devices, etc. to extent far beyond traditional computing.

In the discussion so far, I have tried to build a case for my conviction that
software engineering has reached a next major milestone or perhaps even paradigm
shift, to use Thomas Kuhn’s terminology, in the shift to mobile computing. Even
though there already is significant attention to the topic, we are only at the very
beginning of a major transformation in the information technology industry. This
transformation will require unprecedented degrees of adaptability, configurability
and composability of software. Already today, we can see that software developed
for mobile devices requires many versions in order to handle the variations between
different mobile devices. Second, as mobile software is used in many different
contexts, software services and applications lack the ability to intelligently adjust
their behaviour to the current context. The simple example of a too loud ring tone
in a meeting or a too soft one while having a drink in a noisy bar illustrates this.
Third, the user, being mobile, is constantly in the presence of a constantly changing
set of stationary, nomadic or mobile devices that can be communicated with and
used by the user’s mobile device to improve its user’s efficiency and ability to
perform tasks. Finally, mobile devices are personal and consequently require a high
degree of personalization that also affects the software on the device.
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The key activity central to the transformation to mobile computing is the program-
ming of applications and services on mobile devices. One can take three perspectives
to mobile software. From the first perspective, nothing changes – software is soft-
ware and the same programming languages and basic principles apply. From the
second perspective, one could take the position that software for mobile devices is
a step back from desktop software in that the software engineer needs to consider,
among others, resource constraints, user interaction, memory management and secu-
rity solutions in a way that is similar to desktop software about a decade or more
ago. The third perspective that one can take, and that I feel is the more appropriate
one, is that mobile software adds a unique and novel dimension to programming
that has not been present before and that requires new programming practices and
approaches that, being early in this transformation, we are currently only starting
to explore and experiment with.

The book that you are currently holding marks this milestone in the evolution
of software engineering in an exquisite manner. The author, Tommi Mikkonen,
has managed to strike the delicate balance between defining and discussing the
principles that are fundamental to mobile software on the one hand and on the other
hand discuss the concrete details of programming languages, specifically mobile
Java and Symbian C++, that can be used for programming Series 60 mobile devices.
Since the Series 60 platform is the absolute market leader in open, mid- to high-end
mobile devices, this book is a must-read for anyone interested in programming these
devices. The second advantage of the approach taken by the author is that the book
manages to describe the details of specific releases of programming environments
without making the reader dependable on the specific version. The principles help
programmers to easily evolve to subsequent versions, which appear at a very high
rate, i.e. multiple times per year.

I warmly recommend this book to anyone interested in programming mobile
devices or interested in the state of the art and practice in this area. We are at a
the verge of a major transformation in the information technology industry towards
mobile computing and this book represents and outlines this future in clear and
detailed fashion that will leave the reader with a solid understanding of programming
for mobile devices.

Jan Bosch
Head of Software and Application Technologies Laboratory
Nokia Research Center
Helsinki, Finland.
October 2006

TEAM LinG



TEAM LinG



Foreword by Antero Taivalsaari

I’ve known Tommi for several years, both as a colleague and as a friend. Ever since
first meeting him, Tommi has been passionate about mobile devices and mobile
software development, not only as a professor and an academic researcher, but also
as an enthusiastic mobile software developer himself.

Tommi has pioneered the teaching of mobile software development in Finland.
He arranged the first university-level courses on mobile software development in
Finland back in 2001, and in the past years he has instructed over a thousand students
to become proficient in this exciting and rapidly evolving field. Unfortunately,
the extensive lecture material that Tommi has prepared for his mobile software
development courses has been available only in Finnish so far.

In this book, Tommi makes his expertise in mobile software development avail-
able also to English-speaking software developers and students. The book presents
a comprehensive summary of all the central areas in mobile software development,
ranging from fundamental topics such as memory and resource management to
application design, networking, concurrency and security.

Rather than focusing on specific technologies, devices or operating systems, this
book takes a different approach and presents a summary of the component areas
and issues that are common to all the mobile software platforms. This should result
in a more “timeless” book that should stand the test of time well, unlike so many
other books that are outdated already by the time they come out of press.

Knowing Tommi’s hectic schedule, this book represents a massive undertaking
from Tommi’s part. I am both impressed and envious about his ability to write such
a book, while working on so many other projects simultaneously. I am confident
that this book, for its part, will make the exciting area of mobile software develop-
ment more approachable to a new generation of students and software developers
worldwide.

Dr. Antero Taivalsaari
The original designer of the Java Platform, Micro Edition (Java ME)
Sun Microsystems Laboratories
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Preface

The two latest decades have seen the introduction of more and more hand-held
gadgets being used for communication, as personal digital assistants, and simply
for fun. Personal digital assistants and mobile phones, followed by other types of
devices, such as MP3 players, wrist-watches and the like, have been adopted for
wide use in a relatively short period of time. During the time frame of these decades,
these devices have encountered a major change in their design; many devices were
first fabricated predominantly with hardware, and they served a single purpose. More
recently, as the computing power in them has increased to the level of state-of-the-art
desktops only some years ago, the devices have become a programming environment
that has emerged as a new domain of software development, to the extent that one
can even add new software developed by a designer independent of the device
manufacturer. Moreover, properly documented programming infrastructure has been
introduced to allow one to introduce programming facilities to a proprietary system
without risking the features of the original device.

The outcomes of improved facilities included in modern mobile devices are many.
One can obviously introduce personalized features in devices, and thus create a
system that is best suited for some particular use. Moreover, also mass customization
becomes possible, as copying software once it has been completed is virtually free.
In addition to personal use, also commercial use by enterprises becomes more
tempting, as it is possible to create systems that extend from enterprises’ servers to
all employees anywhere and any time. Starting with email, already now a number
of enterprises are allowing more and more mobile personnel who can interact with
company intranet and computing systems disregarding the restrictions of time and
place. Moreover, the number of devices that forms the potential market for new
applications is huge, and being able to attract a fraction of it will lead to success.

For a company implementing such devices, a major challenge is introduced in the
form of transforming companies that develop hardware-based systems that included
small portions of software to predominantly software companies. Firstly, software
in mobile devices should be robust and reliable to allow users to depend on it.
Secondly, at the same time, software should be generic so that it can be used in
as many devices as possible to allow the largest user base possible to reduce the
need for new development. Furthermore, changes that are evident due to evolving
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hardware – more memory and processing power is regularly introduced in newer
devices, together with more sophisticated hardware features like a camera – should
not raise any compatibility issues but the same code should still run. Finally, the
sheer size of needed software has grown from a small portion to tens of megabytes
in some devices. Managing this amount of software in a practical yet cost-effective
fashion is a grand challenge.

Although programming is really fundamentally the same, be a program targeted
to a mobile device environment or to a desktop, resources available in the latter
can be considered a lot more forgiving in the sense that a smallish programming
error resulting in garbaging some memory every now and then will probably never
cause a failure. In contrast, a smallish error in a program targeted for a mobile
device in a part that handles memory use can cause devastating effects due to the
restricted resources of the device. Therefore the quality of a design, including also
non-functional properties, is even more important in the mobile setting. As a result,
designs will unfortunately be harder to compose. Moreover, although the users of
mobile devices are often adopting usage patterns of embedded devices where they
expect the device to react immediately, when using a programmable mobile device,
delays in execution will inevitably occur as old applications are being shut down and
new ones started. Luckily, when aiming at the development of a single application,
ideally for a single device that one owns, the task is often not overly complex, but
can be performed with minor effort. Moreover, people tend to be more forgiving
with regard to features specialized by and for themselves.

Another way to look at programming of mobile devices is that in some ways
it is about putting together some pieces of embedded systems development. In an
embedded environment, one often has to compose programs in a memory-aware
fashion, and take into account that the system can be active for a virtually unlim-
ited time. Moreover, in such settings, limited performance of hardware is commonly
assumed as a starting point. In the workstation environment, on the other hand, long-
living application development platforms are a commodity we have become used
to. Furthermore, applications are designed with modifications and future additions
in mind. An additional factor is the development time, which has led us to update
workstation software on an almost daily basis; in fact, this can be automated. Not
surprisingly, a similar need for constant management exists when considering the
use of mobile devices in a professional context. However, there is an important dif-
ference. In the desktop setting, applications used by corporations can be managed
by an IT department that determines what kinds of applications can be allowed, as
well as the settings that can be used when running the application. For a desktop
environment, several systems are available for managing the application setting.
However, such systems have become available for managing the applications in
mobile devices only recently. Furthermore, even when relying on device manage-
ment, a user may still have full access to everything in the device, and even if the
corporation were able to install and configure an application, the user can remove
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and reconfigure the application. Overall, this can in fact be considered as a major
obstacle for using mobile applications in the corporate context.

Increasing dependability requirements of communication are also applicable to
the mobile setting. It is obvious that mobile devices can already now run applica-
tions that are extensions of existing systems benefiting from mobility. In contrast,
however, another perspective to using mobile devices as application environment is
to implement new, small, yet innovative systems that run only (or predominantly)
in mobile devices. Currently, mobile games, which already now have established
a foothold as a major line of business, are probably the best representative of this
approach. Even with the current devices on the market, the number of potential
users of such pieces of software is high, and therefore, the price of one download
can be relatively low. The lower price of a sold application, say $10 per download,
can be compensated with the larger number of downloads.

Based on the above, programming of mobile devices differs from other domains in
its characteristics. This book is intended as a textbook on the principles of designing
software for mobile devices. It is targeted at programmers who have experience in
application development, but who have not worked with mobile devices before. The
book is based on experiences in working in the mobile devices industry as well as
experiences in teaching programming of mobile devices at Tampere University of
Technology for several years. Unlike many other textbooks on programming mobile
devices, the book is not intended to be used as a guide for immediately writing
programs or creating applications for a certain mobile platform. Rather, the goal
is to introduce the main ideas and restrictions that are applicable in any mobile
environment, thus enabling more generic use. Moreover, the presentation does not
become invalidated when a new version of a platform comes out that introduces
different facilities for some parts of the system. Still, existing platforms are used
as examples on how to compose actual mobile software and on how the discussed
principles are visible in practical implementations. The discussion is structured as
an introduction to the mobile devices infrastructure in general, memory and its
use, applications and their development, modularity based on dynamically linked
libraries, concurrency, resources and their management, networking, and security.
Each category will be addressed in a chapter of its own.

Finally, let us consider a fundamental question: is there room for special practice
of mobile devices programming, or will it be similar to programming a desktop or
laptop computer? Even now, selecting a very computer-like mobile device for some
particular special-purpose application is an option. Furthermore, with such devices,
restrictions related to scarce resources can be relaxed, as it is possible to purchase
more memory in order to make the devices optimal for a particular application.
In addition, also programming environments that are used in workstations have
been proposed for the mobile environment, including Python and Visual Basic, for
instance. A further option would be to use a system where an operating system
resembling those of PCs was available, like a restricted form of Windows and
Linux, where application development can be more familiar. Moreover, using for
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example JavaScript inside a browser can also be considered yet another way to
compose programs for mobile devices in a fashion that does not differ much from
workstation programming. However, when aiming at the development of software
that can be used in practice in a maximum number of devices, it is more likely
that the restrictions remain, as the hardware forms a considerable cost factor and
not all phones include broadband connectivity, but only something more modest.
Still they require software to operate. Therefore, despite the advances in high-end
phones and their connectivity features, as long as there is room for cost-effectively
manufactured phones that are restricted in their performance, programming them in
a sophisticated fashion requires special skills.
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1
Introduction

1.1 Motivation

The development of mobile software has often been addressed in a fashion that
focuses on using some particular technologies. While this type of approach can
be easily justified for the introduction of a mobile platform that is to be used as
the basis of an implementation, long-term issues are harder to embed into such an
introduction. Furthermore, as the number of mobile platforms has been increasing, it
is becoming an option to aim at discussing the differences between workstation and
embedded software and software that runs in mobile devices at a general rather than
at an implementation-specific level. We believe that this leads to a longer lasting
approach, which will not be outdated when a new version of some particular mobile
platform is introduced, since the basic patterns and philosophy of a design are likely
to remain the same even if the platform version changes.

Principally, the design of software that runs in a mobile device requires that
developers combine the rules of thumb applicable in the embedded environment –
memory awareness, turned on for an unlimited time, limited performance and
resources in general, and security in the sense that the device should never mal-
function to produce unanticipated costs or reveal confidential information even if
the user behaves in an unanticipated fashion – with features that are needed in
the workstation environment – modifiability and adaptability, run-time extensions,
and rapid application development. For this combination, the designer must master
both hardware-aware and application-level software, as well as the main principles
that guide their design. In order to compose designs where all these requirements
are satisfied, the designer is bound to use abstraction, which is the most powerful
weapon for dealing with complexity.

1.1.1 Leaking Abstractions

Due to being such a powerful weapon for attacking software development, abstrac-
tion is also one of the most commonly used facilities in programming. Systems we

Programming Mobile Devices: An Introduction for Practitioners Tommi Mikkonen
 2007 John Wiley & Sons, Ltd
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commonly use are full of abstractions, such as menus, databases, or file systems,
to name a few. Moreover, we are good at managing abstractions we are familiar
with, and know how they should be used. Therefore, the skill of programming in
a certain environment implies that one recognizes the basic abstractions applied in
the environment, and knows how the abstractions are intended to be used.

Unfortunately, abstractions are not problem-free. In particular, problems are immi-
nent when we face a new application domain or environment, such as mobile
devices. Commonly used abstractions of programming may no longer be solid but
they can start to leak. We will study this phenomenon in more detail in the following.

In principle, as argued by several authors, including Gannon et al. (1981) and
Gabriel (1989) for instance, the user of an abstraction can overlook the details of
the underlying implementation. In practice, however, when composing programs,
details of the underlying hardware and underlying infrastructure software used as
the implementation technique of a certain abstraction sometimes become visible
to the software developer or even to the user of the system. We will call this
leaking abstraction.1 However, without knowing the implementation, it is difficult to
understand what happens when the program is executed and a sudden downgrade of
performance occurs, for instance. This makes the design more difficult, as revealing
the implementation can take alarming forms.

As a sample leaking abstraction, we next consider null-terminated strings used in
the C programming language, for instance. The following procedure can be used to
concatenate two such strings:

char * strcat(char * c1, char * c2)
{

int i, j;

while(i = 0; 0 != c1[i]; i++);
while(j = 0; 0 != c2[j]; j++, i++) c1[i] = c2[j];
c1[i+1] = 0;
return c1;

}

The logic of the operation is that first, we browse all the characters of string c1,
and then copy all the characters of string c2 to its end. Moreover, it is assumed
that c1 is large enough to host also the characters of c2, which is not explicitly
expressed in the procedure but is an obvious built-in assumption.

From the functional viewpoint, using this kind of an operation appears perfect.
However, from the practical viewpoint, the function is far from perfect, as in some
cases the implementation of strings becomes visible to the user. A problem is
that if we have to carry out one million concatenations to the same string, we

1 The term ‘leaking abstraction’ has been used in this meaning at least by Joel Spolsky (2004). Also the example
we use to demonstrate such abstractions originates from the same source.
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will unnecessarily go through the same characters all over again as longer and
longer strings adopt the roles of c1 and c2. While the execution would result
in the correct outcome, the time needed for completing the execution would be
considerably extended. By observing this from a completed, running system, one
might be surprised since certain inputs would be slow to process, but by looking
at the actual design, one would immediately learn the obvious problem of this
implementation.

All non-trivial abstractions can be argued to leak to at least some extent (Spolsky
2004). For instance, let us consider the TCP/IP protocol that provides an abstrac-
tion of reliable communication; if the underlying communication infrastructure is
terminally broken, there is no way the protocol can act in accordance to expecta-
tions. Similarly, although the SQL language is a powerful yet simple way to define
database queries, some queries can (and usually should) be optimized by taking
into account what takes place at the level of the implementation.

Fundamentally, programming languages which are commonly available in the
mobile setting, such as C, C++, and Java, and their run-time infrastructures are
also non-trivial abstractions. Therefore, they also have the potential to leak. In
many cases, leaking abstractions of programming languages and infrastructures that
are executed in mobile devices lead to problems in managing resources, memory
consumption, and performance. Therefore, in order to compose programs where
potentially leaking abstractions form a minimal problem, the programmer must
have experience of working in a certain environment to create appropriate designs.
Since expecting that all developers have experience is unrealistic, infrastructures
have been introduced where the most obvious traps will be automatically treated,
as well as tutorials and coding standards that aim at preventing the most obvious
problems associated with leaking abstractions.

As already mentioned, mobile devices are restricted in terms of available
resources. Therefore, in order to cope with leaking abstractions related to resources
of the device, implied by the used programming languages and execution envi-
ronments, the designer should understand what lies beneath the surface, because
otherwise it is easy to use facilities of the language that are not well suited for such
a restricted environment.

1.1.2 Allocation Responsibility

Programming systems in mobile devices can treat complexity in two fundamentally
different ways. On the one hand, the responsibility can be given to the program-
mer, who then takes actions in order to manage resources, such as memory, disk
space, or communication bandwidth. On the other hand, software infrastructure can
be defined for handling the resources without revealing the details to the program-
mer, thus automating resource management from the programmer perspective. The
above strategies can be considered as white-box and black-box resource manage-
ment approaches in the sense that white-box resource management is visible to the
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developer in full, whereas black-box resource management hides its details from
the programmer and aims at an automatic deallocation at an appropriate moment.

Programmer responsibility. Fundamentally, making programmers responsible for
resource allocation results in a white-box approach to resource management that
is relying on programmers who are able to carry out designs in a fashion where
leaking of abstractions is not possible, or, at the very least, leaking is controlled
by them. An obvious language where leaking of abstractions can be a problem in
the mobile environment is C++, as in many cases features of the language require
thorough knowledge of the underlying facilities and implementation techniques.
Implementing programmer responsibility for potentially leaking abstractions can
take many forms. On the one hand, one can define a coding standard that explains
why certain types of designs should not be used, or are considered antipatterns,
i.e., commonly applied solutions that bear some fundamental, well-known handicap
(Brown et al. 1998). On the other hand, one can introduce a coding standard that
defines design guidelines for managing cases where leaking of abstractions is con-
sidered most harmful or likely. Moreover, in addition to knowing the guidelines,
the programmer should also understand what kinds of problems the guidelines solve
and why. This usually calls for understanding of what happens at compilation and
how run-time infrastructure works.

Infrastructure responsibility. A black-box approach to resource management
means that the underlying programming infrastructure is supposed to liberate the
developer from considering potentially leaking abstractions. Examples of environ-
ments that operate in this way include Java and C#, which both can be used for
programming mobile devices. However, in practice the developer is still able to use
the properties of the infrastructure better, provided that she knows how the infras-
tructure works and takes this into account when composing a design. For instance,
being able to compose designs that do not overly complicate the work of a garbage
collector in a virtual machine environment is helpful, as garbage collecting can
seemingly stop the execution of a program for a short period of time in certain
virtual machine environments. Thus, while the black-box approach hides resource
management from the developer and the user, this abstraction leaks when garbage
collection is performed, as its side-effects may become observable by the user.

To summarize, no matter whether the programmer or the infrastructure manages
resources, the way programs are designed and written has an effect on their perfor-
mance and resource consumption. In the following, we discuss the most common
hardware-related issues that the developer is exposed to when designing applications
for mobile devices.

1.2 Commonly Used Hardware and Software
To summarize the above discussion, programming languages and their run-time
infrastructures can be considered as at least potentially leaking abstractions. Such
leaks mean that the properties of hardware and lower-level software are revealed to
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an application programmer in some cases. Therefore, understanding their basics is
a prerequisite for considering how applications should be designed for the mobile
environment.

In the following, we give an overview to commonly used hardware and software
facilities inside a mobile device, whose restrictions can be considered as the main
technical contributors of mobility (Satyanarayanan 1997). The subsections address
hardware, operating system concepts, application software, and the stack of software
components that often forms the run-time environment of a mobile device.

1.2.1 Computing Hardware

The computing hardware of mobile devices can be expected to become more and
more standardized. One important driver for this is the need to integrate all the
subsystems into one chip. This saves development costs as well as energy con-
sumption of the completed devices. Figure 1.1 illustrates the main elements that are
significant within the scope of this presentation.

Processors and Accelerators

Fundamentally, a computer is a system that executes a program stored in memory.
The processor loads instructions out of which the program is composed, and per-
forms the tasks indicated by them. Instructions are low-level commands that discuss
the execution in terms of hardware available in the system. For instance, loading the
contents of a memory location to a processor’s internal memory location, so-called
register, adding the contents of two registers and storing the result in a third, and

Processor

Accelerator

Memory

Cache

Cache

Peripherals

Figure 1.1 Commonly used hardware
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int factor9() {
int index, result = 1;
for (index = 1; index < 10; index++)
{

result = result * index;
}
return result;

}

Figure 1.2 Sample source code

storing the value in a register to a particular location in memory, are commonly
used instructions.

Processors have different instruction sets, i.e., primitive operations that proces-
sors are capable of executing, and their properties can vary. Probably the most
commonly used main processor2 in mobile devices follows ARM (Acorn RISC
machine) design (Furber 2000). The ARM design is based on a 32-bit RISC3 pro-
cessor that is produced by several vendors, and which has been integrated into
many more complex pieces of hardware, such as OMAP architecture by Texas
Instruments. On the software side, for instance Symbian OS runs on top of ARM,
although also other processor alternatives have been considered in the design of the
operating system.

As an example, consider the following. The piece of code given in Figure 1.2
computes the factor of 9. When it is fed to a compiler, which in this case is a GCC
compiler for Symbian OS, the resulting assembly output is as listed in Figure 1.3.
Similarly to most, if not all, assemblers, the output includes individual references to
locations in memory and to registers, as well as load and store instructions, which
form the low-level representation of any program.

In addition to the main processor that is responsible for controlling the device
as a whole, many mobile devices include different types of accelerators and aux-
iliary processors, which in terms of hardware can be considered similar to other
processors, but they play a different role in the final system. They are used for
coding and decoding of radio transmissions, and, more recently, to enable more
sophisticated features such as three-dimensional graphics, for instance. Moreover,
in some cases a proprietary phone implementation can be extended with an appli-
cation processor that is to be used by additional applications without risking the
functions of the proprietary phone. Further possible processors include an access
processor (or a modem) that is dedicated for executing routines associated with
telecommunications.

2 In the terminology assumed here, the main processor is the processor that controls other parts of the system.
3 RISC stands for Reduced Instruction Set Computer, where only a restricted number of relatively simple and
quickly executable instructions are offered. In contrast, CISC, Complex Instruction Set Computer, refers to a more
complex instruction set where also the execution times of different instructions can vary considerably.
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@ Generated by gcc 2.9-psion-98r2 (Symbian build 540) for ARM/pe
.file "test.cpp"
.gcc2_compiled.:
.text
.align 0
.global factor9__Fv
factor9__Fv:
@ args = 0, pretend = 0, frame = 8
@ frame_needed = 1, current_function_anonymous_args = 0
mov ip, sp
stmfd sp!, {fp, ip, lr, pc}
sub fp, ip, #4
sub sp, sp, #8
mov r3, #1
str r3, [fp, #-20]
mov r3, #1
str r3, [fp, #-16]
.L2:
ldr r3, [fp, #-16]
cmp r3, #9
ble .L5
b .L3
.L5:
ldr r3, [fp, #-20]
ldr r2, [fp, #-16]
mul r3, r2, r3
str r3, [fp, #-20]
.L4:
ldr r3, [fp, #-16]
add r2, r3, #1
str r2, [fp, #-16]
b .L2
.L3:
ldr r3, [fp, #-20]
mov r0, r3
b .L1
.L1:
ldmea fp, {fp, sp, lr}
bx lr

Figure 1.3 Sample ARM code

Accelerators can be implemented using two different mechanisms, which are
using multi-purpose hardware, such as a digital signal processor (DSP), and single-
purpose hardware. Using the former is a more general design choice, as the hardware
can be used for several tasks, whereas single-purpose hardware can only be used
for the task it is designed for. However, a DSP is usually a bigger design block
to be fitted in the device, and it requires more energy to run than a single-purpose
piece of hardware. Still, in general, DSPs have superior power consumption to
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performance rate over general purpose processors in tasks that are well-suited for
them. As an example, a study has shown that a typical signal processing task on
a RISC machine (StrongARM, ARM9E) requires three times as many cycles as a
C55x DSP while consuming more than twice the power (Chaoui et al. 2002). The
downsides of DSPs are being solved by introducing more elaborated integration
schemes for off-the-shelf hardware. Such integrated systems typically include a
main processor, auxiliary DSP, memory, and additional interfaces. While systems
exist where everything is integrated into a single chip, it is common that devices with
new features include several chips, each of which is dedicated for a certain purpose.

A continuous trend is that an increasing number of features and improved inte-
gration techniques lead to more complex designs in the sense of architecture. In
addition, many hardware and platform manufacturers have been emphasizing mech-
anisms related to power management, which also bear an effect on the complexity
of the final design. Moreover, such features are becoming more important, as ready
and use times of mobile devices are meaningful properties for the consumer.

When more and more advanced features that require more processing power are
introduced, clock frequency of the main processor must be increased. Unfortunately,
this leads to problems due to heat generation. Therefore, one can consider that the
current approach, where there is a master processor and a small number of auxil-
iaries, may need to be reconsidered. As a solution, two contradicting approaches
have been proposed. One is symmetric multiprocessing, which injects the complex-
ity of programming to the operating system, and the other is the introduction of more
and more specialized auxiliaries that manage their internal executions themselves.
Presented in Figure 1.4, both approaches can be justified with solid arguments, as
discussed in the following.

Symmetric multiprocessing (SMP). A system based on symmetric multiprocessing
consists of a number of similar processors that usually work in intimate connection.
A common implementation is to hide them in the same operating system core,
which allows them to balance load between each other. This scheme gives an
opportunity to save energy by shutting down some of the processors when the load
is low, and keeping all processors active when processor-intensive tasks are being
performed. Moreover, as all the processors can be hidden behind the same operating
system interface and have similar characteristics, a programmer can be offered an
abstraction that can be conveniently used. On the downside, multiprocessing can
be a relatively complex solution, when assuming that fundamentally the device
can actually be a mobile phone, which by nature is a very specialized system.
Moreover, the adequateness of the processor-level granularity as the basis of energy
management can be questioned.

Asymmetric multiprocessing. The other alternative, the introduction of multiple
specialized pieces of hardware, also offers an increased performance. Furthermore,
the design of individual pieces of equipment can be eased, as they all perform some
particular tasks. However, allocating tasks to different pieces of equipment cannot
be implemented in a straightforward fashion as with symmetric multiprocessing.
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Figure 1.4 Symmetric and asymmetric multiprocessor schemes

Instead, the programmer may be forced to participate in the allocation for adequate
results. As a consequence, different devices relying on different sets of auxiliary
equipment must be supported. Moreover, some devices may implement some equip-
ment with additional software running on the main processor. One possible result
for this is to introduce abstractions that hide the complexity of hardware config-
uration in a standard fashion. Then, hardware support can be used whenever it is
available, and software emulation will be used in devices that do not implement
hardware acceleration. Still, a considerable development effort must be invested in
the definition of interfaces that can be used with different implementations. Fur-
thermore, standardization is required to enable interoperability. At present, the use
of accelerators can be seen as a step in this direction.

Memory and Related Hardware

In current mobile devices, memory is usually internally constructed so that 32-bit
memory words are used. Each word can be further decomposed to 4 bytes of 8 bits.
In most cases, words are the main elements of memory in the sense that even if less
than a word would be enough for a certain variable, a full word is still allocated
in practice for performance reasons. There is, however, a possibility to allocate
several variables to the same word, for instance. Unfortunately, this may result in
degraded performance, as it is usually faster to access memory when respecting
memory word boundaries. Respecting the word boundary is commonly referred to
as (word) alignment.
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Several types of memory are used. First, there is RAM (random access memory),
which is used during the execution of programs for storing the loaded programs,
and the state of the execution and variables related to it. This type of memory
can be read and written. The typical amount of RAM in a mobile device has been
increasing rapidly, with typical figures reaching up to 64 or even 128 Mb. Different
types of RAM can be considered, including static RAM (SRAM) and dynamic
RAM (DRAM). SRAM preserves its state but is unfortunately usually expensive,
and it is commonly used only in memory that is to be accessed quickly, such as
cache, which can be considered as an intermediate storage used for storing memory
locations that the processor frequently accesses. DRAM, on the other hand, is based
on transistors requiring constant attention from the rest of the system to preserve
their state, which consumes some energy. DRAM is commonly used in the mobile
environment, where probably the most common implementations rely on SDRAM
(static DRAM). A benefit of this type of memory is that it can be run using the
same clock speed as the processor.

Second, there is ROM (read only memory), which can be read but not rewritten.
For instance, programs that are permanently stored in the device can be located
in ROM. For execution, programs are usually first loaded to RAM for execution,
although depending on the used chip set it is sometimes possible to execute pro-
grams directly from ROM using so-called in-place execution. In a mobile device,
the amount of ROM can be 64 Mb or more, although flash memory, discussed in
the following, can also be used for a similar role.

Third, many devices also contain permanent storage, although ROM and RAM
would be sufficient for many purposes. The rationale is that if the battery is removed,
it is helpful that the data stored in the device remains unaltered. Permanent storage
can be implemented in terms of a hard drive or as flash memory which maintain
their information even if power is switched off. Obviously, accessing disk is at least
a magnitude slower than accessing RAM or ROM. Also physical characteristics
of hard drives have couraged the use of flash memory, as it is not as prone to
mechanical failures.

As already mentioned, flash memory is commonly used in mobile devices. Access-
ing flash memory can be implemented such that it is relatively fast to read from
memory, but writing is usually slow. The reason is that it is possible to turn single
bits from 1 to 0, but turning 0 to 1 can only be performed in groups of 64 kb
for instance, depending on the hardware implementation. As a result, even a small
change in a file can result in a complete rewrite of the whole file. Two types of
flash memory are to be considered, NOR and NAND flash memories. NOR flash
can be used as direct memory space, and as ROM or RAM. The latter is differ-
ent from SDRAM in the sense that while an access to flash-based RAM can be
slower, SDRAM requires constant attention of the processor to maintain the mem-
ory active, which consumes energy. In contrast to NOR flash, NAND flash behaves
analogously to a hard disk, and requires loading of code to memory before running
it. In comparison to other types of memory and hard disk, an additional restriction
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Figure 1.5 Memory hierarchy

is that only a very limited number of writes, say 100 000–1 000 000 rewrites, can
be performed on flash due to its exhaustion. Similarly to hard disks, the use of flash
requires the management of memory usage, which can consume a considerable
amount of memory in a large flash file system (Chang and Kuo 2004).

The memory types discussed above create a hierarchy of memories (Figure 1.5),
where the size of the memory and access times vary; at the bottom of the hierarchy
(processor’s internal registers or even cache) access is rapid and can be calculated
in some nanoseconds, but only a limited amount of such storage space is offered. In
contrast, accessing main memory takes place on the order of tens of nanoseconds,
and accessing a value in disk is even slower, up to the order of tens of milliseconds.
Furthermore, using some memory available in the network is slow, but a virtually
unrestricted amount of memory can be offered.

In addition to the memory hierarchy, there is a special piece of hardware that
is associated with memory, although it is not directly included in memory. The
memory management unit (MMU, omitted from the figure for simplicity) is more
conveniently implemented within the processor chip. The purpose of this piece of
hardware is to enable using free locations in the memory for programs, disregarding
their physical location. The MMU then manipulates the memory shown to the pro-
cessor such that the memory image is simplified in the sense that programs usually
appear to be in continuous locations in the memory even if they are distributed in
the memory. Similarly, programs can be located in different parts of the memory
during different execution instances of programs. MMU is also used for imple-
menting memory protection enabled for processes, which we will discuss later in
this chapter. Furthermore, MMU can also be used for implementing virtual mem-
ory, where some parts of the system are saved to disk in terms of memory pages
when additional memory is needed, and when the pages are used again, they can be
restored from the disk. As flash memory is not very convenient for such a purpose
due to slow write operations and restricted number of write accesses, this scheme
is not commonly implemented in mobile devices. However, the ability to freely
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Figure 1.6 Fragmentation

locate programs in different parts of the memory as well as memory protection are
appreciated, and therefore many mobile devices include an MMU. Still, there is no
technical barrier to implementing a full virtual memory system.

Finally, two phenomena commonly associated with memory and its use are to be
considered when composing programs for mobile devices. These are fragmentation
and garbaging. The former means that memory is reserved such that some free
memory remains unused between reserved blocks of memory (Figure 1.6). While
fragmentation can in principle be handled by conjoining available free slices of
memory to a bigger memory area, managing the lists of free and reserved slices
can become a burden for the operating system, and superfluously consume precious
memory and processing time. The latter refers to a situation where some data
allocated to the memory can no longer be deallocated by the program that has
allocated them, potentially reserving the memory locations until the execution of
the program terminates, or, even worse, until the system is shut down.

Subsystems

In addition to the hardware described above, several types of auxiliary subsystems
can be available, that require support from the hardware:

• Bluetooth is a short-range radio link that is used for cable replacement.
• Radio interface is used for communicating with the mobile network. Several band-

widths and protocols can be used, including for instance GSM, GPRS, WCDMA,
and WLAN, to name a few.

• Keyboard (or touch screen) allows the user to input data and commands to the
device.

• Screen enables the user to read the information stored inside the device.
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• Additional memory for switching data between mobile devices using a memory
stick that can be attached to a USB port or some other interface.

• Battery interface is used for managing the status of the energy source.

The above list is by no means exhaustive, and additional hardware is easy to imag-
ine. In principle, anything that can be connected to a mobile device can form a new
subsystem. Moreover, whether the connection is permanent or dynamic via a local
area radio link, for instance, is becoming less important, as the capacity of connec-
tions is becoming comparable due to the increased coverage and bandwidth. This
results in an option to use implementations where a number of devices cooperate to
perform some higher-level tasks. At a lower level of abstraction, implementing this
requires support from hardware in terms of I/O interfaces or the use of universal
asynchronous receiver transmitters (UART), for instance.

In general, the characteristics of different subsystems are not directly visible
to the application software running in the device as such but via different types of
programming interfaces (or APIs, application programming interface), which makes
it possible to run the same software even if the hardware is upgraded or modified
in the design of a different type of device, which is common in the development
of product families. However, lowest-level software must be adapted in order to
benefit from the new hardware.

1.2.2 Low-Level Software Infrastructure

Kernel forms the core of an operating system. Fundamentally, it is a machine that
is designed to manage the relationship of the underlying hardware and software that
uses its resources.

For accessing hardware, kernels usually implement special modules called device
drivers that can be used for creating a connection to the underlying subsystems and
communicating with external equipment. The usual way to implement such drivers is
that they send a request to the external subsystem, and the subsystem is responsible
for serving the request. When the request is served, the subsystem responds with an
interrupt that the kernel will acknowledge and serve with a corresponding interrupt
handler, which contains the procedure for managing interrupts. Device drivers can
be implemented in a layered fashion, where a physical layer handles the details of
the actual hardware. A logical level can then be introduced for handling the parts
that are common for all similar subsystems.

When considering the connection between the kernel and other software, the
resources of the former are a necessity to create applications. Commonly used
terms are processes and threads, which we will address in the following.

Processes can be considered as the units of resource reservation. This allows
designs where the different resources allocated by programs are kept in isolation
from one another. This, however, requires support from the hardware in the form
of an MMU, which is usually included in processors used in mobile devices that

TEAM LinG



14 Programming Mobile Devices

can be extended with new applications. For devices that do not allow this and only
include proprietary software, this may not be an option; instead, all processes can
run in the same memory space, when they can interfere with each other’s execution.
Examples of resources that are managed by processes include memory in particular.
In addition, threads that are run within the memory space of the process are resources
owned by the process. In systems where threads could not be created separately,
they were commonly associated with each other.

Threads can be taken as units of execution. Each thread can be considered as a
conventional program that has a control flow, and some piece of code it executes.
Threads belong to processes, and they can share resources and data structures with
other threads inside the same process. When the thread that is being executed is
changed to another by a special part of the kernel, the scheduler, the event is called a
context switch. If the operating system can force a context switch even if the thread is
not ready for it, the scheduler is called pre-emptive, and if the thread must explicitly
pause its execution, the scheduler is referred to as non-pre-emptive. A pre-emptive
scheduling policy is more flexible, but its performance ratio is usually recommended
to be kept at maximum 70% as otherwise some operations that are important for the
user can be delayed in favor of other operations. Moreover, context switching can
also be executed repeatedly, if the performance ratio is increased. In contrast, for a
non-pre-emptive scheduler, a fixed order of executions is usually defined, which is
less flexible but whose performance ratio can be close to 100%. Two types of context
switches can be considered; one takes place when a thread is changed to another but
the process hosting the threads remains the same, and the other when also the hosting
process is altered. The former is usually a lighter operation, but even this operation can
be considered expensive in the sense of performance. The reason is that all the work
performed for pausing one thread and selecting and starting the other is overhead.

1.2.3 Run-Time Infrastructure

In this subsection, we connect run-time infrastructure of programming languages
used in the mobile setting to the facilities of the underlying hardware and operating
system software.

Allocating Memory for Programs and Variables

Perhaps the most straightforward consumers of memory are constants, which can
usually be saved in ROM. This saves some valuable RAM for other use.

For variables, two locations can be imagined. When a program is being run, its
modifiable data must be stored in RAM, as the program can constantly alter the
data. In contrast, when the execution is completed (or interrupted) data can be saved
to disk for further use in some later execution. Saving data to disk is not simple,
however. Disk (or flash memory) access can be slow, which can be problematic for
the user. Furthermore, it can be difficult for the user to realize when all data has
been saved and it is safe to turn off the device. Therefore, the design of programs
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should ensure timely saving of data in a fashion that is straightforward from the user
perspective. In many mobile devices, this has been implemented using a practice
where dialogs imitate transactions of database systems, offering for instance ‘Done’
selection for committing to the transaction in a fashion that is clear for the user.

Inside RAM, two fundamentally different locations can be used for storing vari-
ables, execution stack and heap. Execution stack is a memory structure that manages
the control flow of a thread. Every method call made by a thread results in an activa-
tion record or a stack frame associated with the stack. The structure of an activation
record is illustrated in Figure 1.7. This data structure includes information related
to the management of the control flow, such as where to return once the execution
of the called method is finished and what method made the call.4 In addition, each
activation record contains method parameters, the return value (if applicable), and
variables that are local to a method, which in some systems are called automatic
variables that are defined within the scope of the method. As the stack is intimately
associated with the thread using it, the execution stack is usually local to a thread.
In contrast to stack, which is structured in accordance to the execution of a pro-
gram in terms of activation records, heap is an unstructured memory pool from
which threads can allocate memory. Unlike memory allocated from stack, where
the execution flow manages memory consumption, memory allocated from the heap
is under the responsibility of the programmer. The accumulation of heap-allocated
memory areas that are no longer accessible due to a programming error for instance
is a common cause of garbaging; then, a programmer allocates memory, but never
deallocates it.

4 Exact details of activation records differ slightly in different systems. However, the principal idea remains the
same.
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The fashion in which the programmer composes programs determines where data
structures are allocated. As an example on memory allocation from stack and from
heap, consider the allocation of the following data structure:

struct Sample {
int i;
char c;

};

This data structure is most likely allocated to memory in a fashion where each
variable takes a different memory location in terms of words, resulting in the con-
sumption of two 32-bit memory words, one for i and the other for c. While the
actual size of the memory allocation is usually handled by the compiler and associ-
ated run-time environment, its location in the program defines how data structures
are partitioned between the stack and the heap. Automatic variables, i.e., those that
are local to a method or procedure, are allocated from stack, and explicitly allo-
cated data structures, using, say, malloc or new, are placed in the heap. Figure 1.8
represents two different ways to locate the above data structure to memory using
stack and heap as the locations. As already discussed, the location that is allocated
for a data structure affects the way memory is to be managed; stack-based variables
are automatically created as the execution advances whereas heap-based variables
require explicit allocation and deletion, assuming that no special infrastructure for
garbage collection is introduced. Unfortunately, in some cases compilers perform

int SInStack() {
Sample s;
....

}

int SInHeap() {
Sample * s;
s = new Sample;
....

}

s.i

s.c

...

...

s

...

...

s.i

s.c

...

...

Stack          Heap

Stack

Figure 1.8 Allocating memory for an object from stack and from heap
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int todo {
return 1;

};

int main() {
todo();

}

main()
todo()

stack
(RAM)

Program memory
(ROM, RAM)

todo main

Source code     Allocation to memory

return
address

heap
(RAM)

Compilation
and download

Figure 1.9 A program and associated infrastructural memory consumption

implicit allocations from heap even if a programmer assumes stack-based treat-
ment. Such cases can lead to hard-to-trace errors that only become visible after an
extended execution.

Programs are most commonly stored in ROM, flash, or disk, if such a facility is
available in the device. When a program is run, it is usually loaded from its location
in the storage to RAM for execution. This enables the use of updates for fixing bugs
as well as the use of user-installed applications. Figure 1.9 demonstrates one way
to allocate program and associated data in different memory locations.

For ROM-based programs, in-place execution can be used. This saves RAM, as
there is no need to create an additional copy of the program into it. Usually this
type of approach is used when a program is located in ROM, and it is beneficial to
always run the program unaltered. For instance, in-place execution could be used for
the introduction of a safety feature that enables (emergency) calls even if a mobile
device is otherwise infected with a virus or some other malicious software. For flash
memory, the type of flash used defines whether in-place execution can be used or
not. As NOR flash can be used as direct memory space, programs stored to this type
of memory are candidates for in-place execution, but because NAND flash behaves
analogously to a hard disk, programs must always be loaded to RAM. There are also
downsides to using in-place execution. First, it is impossible to upgrade the system
using software modules that are downloaded after the installation. Second, it is
not possible to use compression or encryption techniques, as the code must be exe-
cutable as such. Therefore, in-place execution is becoming less favorable than it was
in mobile devices where the option to download new applications was not available.
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Generated Run-Time Elements

As already discussed, all programs and variables in them are allocated to mem-
ory locations when a program is executed. In addition to the basic cases, more
sophisticated software structures introduce additional memory consumption. Such
structures include infrastructure for inheritance and virtual machines, which we will
discuss in the following.

In association with inheritance, an auxiliary data structure called a virtual function
table is commonly generated. Its goal is to manage dynamic binding (Figure 1.10).
When referring to a method during the execution of a program, dynamic binding
does not refer to the method directly, but via a reference to the methods of the
associated class and an offset that identifies the exact method to be called. Effec-
tively, this implies that for all classes where dynamic binding can be used, a table
is created where the cells of the table refer to different functions of the class. Then,
when a program runs to a virtual function call, object type is used to select the
right virtual function, and an offset included in the generated code is used to select
the right function. As the outcome, all classes that potentially use dynamic binding
require additional memory for the virtual function table, and, furthermore, add one
extra memory word in each object for the type tag, which in reality often is a
reference (or pointer) to the right virtual function table.

A virtual machine can be taken as a processor (or interpreter) implemented
with software. This eases porting of programs implemented on top of the virtual
machine, as the same (or similarly instructed) virtual machine can be used in dif-
ferent hardware environments. Fundamentally, two types of virtual machines can
be considered. One is such that an interpreter is used that executes programs by
simply interpreting each instruction as such. The other approach is that once the
program to be run is fed to the virtual machine, the virtual machine compiles it into

class C {
int i;
char c;
virtual void v();
virtual double d();

};
i

c

ID

Stack/Heap
(object instantiated

in memory)

d-id

Virtual
function

table
(program
memory,

RAM)

v-id

C.v
code

C.d
code

Method
code

(program
memory,

RAM)

Figure 1.10 Virtual function table

TEAM LinG



Introduction 19

an executable form that is closer to the actual machine code and can therefore be
executed faster. Also a combination of the two is possible. Then, some commonly
executed parts of the program for instance are compiled, whereas parts that are
only executed seldomly are interpreted every time. This technique is referred to as
hotspot compilation. A further issue worth considering is that since programs can
be interpreted as data that are fed to a virtual machine, the machine can impose
additional restrictions on programs. Moreover, it can control resource usage of pro-
grams, and manage loading of programs, an important facility to centralize in the
mobile setting, to execution. A sample virtual machine, which reflects the features
of a Java virtual machine, is illustrated in Figure 1.11 (Hartikainen, 2005). The
roles of the different components of a virtual machine are listed in the following.

• Class loader is a component responsible for loading programs, given in terms of
classes in our reference system.

• Run-time data is a container for loaded programs. It includes elements similar to
those used in native executions for the purposes of the virtual machine.

• Execution engine contains a scheduler, which is responsible for selecting a thread
for execution, a memory manager, which ensures that no illegal memory refer-
ences are made and that memory is deallocated when it is no longer needed, and
a bytecode interpreter, which executes the actual programs.

Garbage collection, i.e., freeing of resources that are still reserved but are known to
be abandoned, can be implemented in two different ways using a virtual machine.
Usually, a simple way is to implement garbage collection in cooperative (or stop-
the-world) fashion, which stops the application while garbage is being collected.
Therefore, only the garbage collector has access to data, and it can perform its task
without a risk of modifying the same variables as the application at the same time.
In contrast, parallel garbage collection can also be implemented, but this requires

Class
loader

*.class*.class*.class*.class
loads

Run-time data
App.

area*

Class
area

Stack

Heap

* App. area includes e.g. Program Counter

loads classes into

Execution
engine

Bytecode
interpreter

Scheduler

Memory
manager

calls

use

garbage
collection

Figure 1.11 Elements of a Java virtual machine
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a more complex design because the garbage collector and the application being
executed operate on the same data structures. In general, garbage collection is a
wide topic with dedicated books (Jones 1999), and its detailed introduction at the
level of individual algorithms, such as reference counting, mark-and-sweep, heap
compaction, or more recent generational garbage collectors, falls beyond the scope
of this book.

1.2.4 Software Stack

Building on top of kernel and other low level facilities, software used in mobile
devices can be characterized using three different categories of software: appli-
cations and related facilities, middleware, and low-level software. The reason for
separating these layers is that it is often desirable to consider that such levels of
abstraction can evolve independently of each other, i.e., it is preferable that applica-
tions are independent of middleware version, and that middleware in general is not
tied to a particular version of low-level software but can be used over several gen-
erations. Furthermore, maintained and relatively static interfaces are often defined
to separate the layers. In the following, we address these categories one by one.

1. Application-level software is about the development of meaningful applications
for an end user. In mobile devices, common application development rules of
workstation software apply to a great extent, as it is often the intention of the
device manufacturer to allow the introduction of additional applications. Imple-
mentation of other software components can benefit from using the provided
interfaces of the lower-level components, but their implementations should not
be relied on because different versions of software can be used in different
devices. Moreover, a characteristic property of application-level development is
usability, as otherwise users may reject the application.

2. Middleware software offers facilities that ease the development of applications.
This often includes libraries such as support for using certain communication
protocols. While an application developer is usually only using already existing
systems, in some cases it is a necessity to define some new application-specific
components. Then, it is common that the implementations must follow some
predefined interfaces. In many ways, rules introduced for communications pro-
gramming by Sridhar (2003) can be followed in the implementation of such
components. The emphasis is often placed on portability in the sense that the
details of the underlying hardware are not always benefited from even if this
would result in improved performance. Despite this, characteristic properties
include performance and memory awareness at this level of abstraction in prac-
tice despite device- and platform-specific features.

3. Low-level software covers kernel and device drivers, and virtual machines when
applicable. Usually all such software is fixed by the device manufacturer. When
developing such software, guidelines of Barr (1999) can be benefited from due
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to the fact that in many ways the development of low-level software resem-
bles the development of deeply embedded systems, with close connection to the
underlying hardware. However, even at this level of abstraction, some precau-
tions can be taken for reusability in future hardware environment, for instance.
A characteristic property at this level is hardware awareness in general, but in
a fashion that does not impose too harsh restrictions. In general, software asso-
ciated with this level of abstraction is managed by a device manufacturer or
platform developer.

To summarize the above discussion, the lower one goes in the sense of abstrac-
tion, the more one must understand the properties and restrictions of the platform
and the hardware environment. Unfortunately, even at the application level, some
properties of the environment remain visible, making applications a leaking abstrac-
tion. Moreover, when aiming at applications that can be used in multiple devices,
also device variance can be considered as a main issue in the development.

A further problem results from the fact that the levels are seldom static but evolve
as more and more devices are implemented on top of the same set of software
components, often referred to as a platform.5 In this setting, it is common that
upgrades take place and introduce new features to the platform as more hardware
and processing facilities are introduced, as well as standardization advances. If
performed in a careless fashion, the introduction of a new version of some low-
level feature can lead to invalidation of some applications. Therefore, extra care
should be paid for maintaining (binary) compatibility when composing new versions
of middleware and low-level software. Otherwise, the platform can corrupt to a
collection of devices in which one cannot run the same software, but must make
device-specific modifications for all software that takes into account specifics of
devices that are to be used for running the application.

For practical reasons, the development of a platform and the development of an
application may have different concerns. For instance, for a particular application,
many concerns related to variability to different types of devices – essential aspects
of platform development – become irrelevant, if the application is targeted to only
one type of device. Similarly, tailoring applications to run on as many platforms
as possible often becomes relevant for an application developer only when the first
running version is available, whereas tailoring a platform such that it will run all
the applications constructed in accordance to some guidelines must be taken into
account at the very beginning of the development as a compatibility requirement.

1.3 Development Process
The development process of a piece of software intended for a mobile device dif-
fers from that of conventional workstation software. The main reason is that first,

5 Strictly speaking one can consider that all the above levels constitute different platforms: OS platform, middleware
platform, and application platform. Also other categories have been proposed.
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the developed software is often tested in the development environment, usually a
PC, with an emulator. Only when the software runs is it downloaded to an actual
mobile device for testing, as depicted in Figure 1.12. The development worksta-
tion is commonly referred to as a host, and the final execution environment as
the target.

The software tested with the emulator and the software downloaded to a mobile
device can be identical, but they need not be. If the same programming infrastruc-
ture is available in both environments, like a common virtual machine for instance,
the software can obviously be the same, as the case can be with Java. However,
if there is no infrastructure that would enable the use of the same software, differ-
ent compilations are needed. The process where a workstation is used to compile
an executable which is downloaded to a different system is referred to as cross-
compilation. While it is possible to emulate the low-level behavior of a system,
differences in available environment sometimes lead to early use of the actual
device even in the development phase.

Obviously, being able to run the same version in the development and the final
execution environment eases debugging, as only one tool-chain is needed. In the
best case, downloading the application to the final environment is trivial. However,
if cross-compilation is needed, the phase where software runs in the emulator can
be only the beginning of debugging and testing activities that are necessary until the
program is completed. For instance, there can be additional requirements regarding
compilation, if the mobile device does not support all the features of the emulator.
For example, older versions of Symbian OS (before v.9.0) were unable to handle

Mobile device

Emulator

Development
workstation

Emulator
runnable

Emulator
compilation

Device
runnableCross-

compilation

Device
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Device
runnable

Source
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Packing
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Figure 1.12 Development process and software download

TEAM LinG



Introduction 23

global variables in dynamically loaded libraries in devices,6 but forced one to use
a platform-specific feature called thread local storage (TLS), where thread imple-
mentation was piggy-backed with global variables (Tasker et al. 2000). However,
this problem only arises in the cross-compilation phase, as it is related to the final
execution environment, not to C++ that is used as the programming language or
emulator, which runs on the development workstation and can deal with global
variables without problems.

In addition to the actual cross-compilation, many environments require the use
of installation files. In addition to plain compiled programs, such files can often
be extended with additional data, which can be auxiliary data files, or sound or
graphics extensions for a certain program, for instance. When a package containing
all these files is fed to the installer application residing on the mobile device, the
installer then unpacks the files and places them to convenient locations as defined
by the package.

1.4 Chapter Overview

The chapters of this book introduce the main concerns of the design of software for
mobile devices. Unlike many other introductions, we have organized the presenta-
tion in accordance to concerns, which are memory usage, concept of applications,
modularity and available mechanisms, concurrency, generic resource management,
networking, and security. Individual chapters and their contents are listed in the
following.

Chapter 1 has introduced the basics of mobile devices in terms of underlying
hardware and software. The goal of the chapter is to introduce the basic concepts
on top of which further chapters will build on.

Chapter 2 discusses memory management, which a designer must master in the
mobile setting. As memory is one of the restricted elements of a mobile system,
it is important to understand the basic principles of managing its use. The chapter
introduces some design patterns, i.e., reusable design decisions that solve certain
problems in a predefined context (Gamma et al. 1995), for memory-aware software,
and gives examples on memory management in mobile devices. Similar topics have
already been addressed by Noble and Weir (2001), although their focus is been
wider.

Chapter 3 introduces the concept of an application. While in principle, all software
can be implemented from ground up, mobile software platforms usually introduce
a prescribed architecture for applications. Furthermore, another important issue is
packaging applications for delivery to a device.

6 The reason for not using global variables in dynamically linked libraries lies in the fact that at least one additional
memory page, i.e., memory allocation unit, would be reserved for the library if global variables were allowed.
This would lead to a considerable overhead.
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In Chapter 4 we discuss the use of dynamically linked libraries, and demonstrate
how available implementation techniques become visible to a programmer in a
mobile environment. Again, the purpose is to address how the selected design and
implementation decisions are unveiled to programmers.

Chapter 5 introduces the most important mechanisms of concurrency applicable
in the mobile setting. The chapter addresses issues like whether to use threads,
which are a common technique when programming desktop systems, or to use
other means of serialization, which can offer less resource consuming solutions.
Moreover, the chapter considers reusability of such designs.

Chapter 6 integrates concurrency with the management of different resources that
must be handled in a mobile device. The chapter also discusses problems associated
with the fact that it is not uncommon that even seemingly similar devices can include
some differences in their hardware, which can sometimes lead to complications in
the development of associated software.

Chapter 7 defines how a mobile device can interact with networks. The goal
is to describe how mobile devices can be used in a networking application, and
how software residing in a mobile device should be designed, and general topics
associated with distributed systems and their implementation are mainly overlooked.
Furthermore, the chapter also discusses two cases, one on using Web Services
with a mobile device, and another on ad-hoc networking over short-range wireless
protocols using Bluetooth as an example.

Chapter 8 is dedicated to security properties of a mobile platform. The chapter
discusses both design patterns for secure designs as well as approaches adapted in
existing platforms. The rationale of locating this important topic towards the end
of the discussion is that security is an issue that contributes to all the previous
techniques in a fundamental fashion. Without first discussing the basic implementa-
tion, it would be impossible to introduce a suitable security concept for the different
issues.

In each chapter, we will use mobile Java (Riggs et al. 2001; Topley 2002) and
Symbian Operating System (Edwards et al. 2004; Harrison 2003; Tasker et al. 2000)
as examples on real-life mobile platforms. The reason for using these systems is that
in many ways they contradict each other. In mobile Java, the underlying mindset is
that it can be introduced as an external facility to all proprietary phones, and that
the run-time infrastructure will adopt a major portion of the complexity of dealing
with scarce resources. In contrast, in Symbian OS, the complexity is explicitly made
visible to the programmer, together with certain patterns and idioms that are to be
used when dealing with resources. When used with care, this in principle yields
improved performance, because the whole power of the device’s hardware can be
used.

In addition, we also give some exercises on the topic discussed in the chapter.
However, the purpose is not to focus on these particular platforms but to maintain
a more abstract approach, but examples merely characterize some design solutions
made in real platforms.
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1.5 Summary

• Programming of mobile devices is fundamentally the same as programming of
desktops. However, design flaws are more prone to cause problems, as resources
are scarce in mobile devices. Moreover, available facilities are usually not as
advanced as when programming a workstation, but developers must sometimes
rely on practices more commonly associated with programming of embedded
systems.

• Understanding the characteristics of the underlying hardware and software infras-
tructure is a practical necessity for dealing with leaking abstractions in the mobile
setting.

• While there are several types of devices, they share the same basic architecture.

– Processor, a hierarchy of memory facilities, and auxiliary subsystems for inter-
acting with the environment and enhanced features.

– Operating system, middleware, and applications, whose reliability requirements
may differ. This has implications for software development as well.

– Ability to reuse existing infrastructure as a common platform in multiple
devices is preferable.

• A fundamental design decision of future mobile devices is whether to use sym-
metric multiprocessing versus a collection of specialized pieces of hardware.

– Symmetric architecture eases the development of applications in the sense that
all facilities appear similar to the programmer.

– Asymmetric architecture can be more specialized in its resource use, which
often hardens design and adequate use of available facilities.

• Run-time software infrastructure can introduce overhead; examples of such over-
head include virtual function table used for implementing dynamic binding asso-
ciated with inheritance, and virtual machines.

1.6 Exercises

1. What solutions would be applicable for defining an abstraction that does not leak
for strings? Which programming infrastructures (languages, operating systems,
etc.) use them?

2. What properties of applications have potential for leaking in the mobile environ-
ment, assuming that a programming language familiar to you is available? How
should the developer address these properties?

3. What differences can you find in your own software programs when considering
the way in which they use stack and heap? Why?

4. Consider a calendar application running in a mobile device. Which services does
it use from low-level, middleware-level, and application-level components?

5. Which features of programming languages, such as C++ or Java, can be problem-
atic when programming mobile devices? What kinds of coding rules or idioms
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could be given for a developer to ease the development, assuming that for
instance memory usage and resource management are to be controlled better?

6. In-place execution enables the execution of programs directly from ROM. What
rationale is there not to implement all features of a mobile device using this
technique?

7. What functions could be separated from the main processor to be executed by
some auxiliary unit? What would be a reasonable level of abstraction to offer to
the application developer?

8. What parts of the hardware should be standardized for a mainstream workstation
operating system to be assumed as the platform for mobile applications? What
would this mean for application developers?
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Memory Management

2.1 Overview

Memory is an important resource for any computing system. However, memory
management is different from managing some other resources in the sense that
there can be no single module that would be responsible for memory management
in isolation of the rest of the system. Instead, memory use is necessarily tangling
everywhere in a program. Furthermore, when considering programming mobile
devices memory is a critical resource, because in an attempt to keep the cost of the
device low, manufacturers include only a restricted amount of it in devices although
all the running programs are competing for it. Moreover, in addition to forming a
considerable cost factor, memory chips also consume some power, the amount of
which depends on the amount of memory included in the device. Therefore, many
devices are limited with respect to their memory also due to this reason.

At the same time, memory is a crucial resource whose use cannot be abstracted
away. Instead, programmers essentially define how memory is used in programs,
as a common goal of language design has been to enable explicit allocation of
memory in many imperative languages, such as C and C++. Furthermore, the way
programmers write their programs has a large contribution to the memory usage
of the program. In fact, in some mobile platforms, almost all programs show signs
of preparation for the case where the program runs out of memory or some other
resources, making memory consumption a cross-cutting problem when composing
programs.

2.2 Strategies for Allocating Variables to Memory

As already discussed, the programmer defines how variables are allocated to differ-
ent memory locations, enabling the use of different memory areas. While the stack
and the heap are in principle just memory areas, the fact that the responsibility for
their management lies with the run-time infrastructure and the programmer, respec-
tively, leads to practical differences. Additional considerations should be paid to

Programming Mobile Devices: An Introduction for Practitioners Tommi Mikkonen
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the fact that when using the heap, sharing of data is easy and natural, whereas with
stack-based variables one should use references with care, if at all, because as the
execution proceeds the stack increases and decreases, and may overwrite referred
data. Furthermore, whether a variable is statically allocated to a permanent location
or dynamically allocated from stack or heap is commonly visible at the level of
programming languages used when composing programs to mobile devices, which
in fact implies that the designers of the language have wanted that the programmer
designs how a program uses memory. This forces the programmer to design the
allocation.

In the following, we discuss the basic strategies for using global variables as well
as selecting the stack or the heap for allocation of a variable.

2.2.1 Static Allocation

As already hinted above, perhaps the simplest case of allocation is static allocation.
Then, a variable is statically allocated to a certain location in memory, and all
references to it always address this location. What makes the situation simple is the
fact that the variable remains allocated throughout the execution of the program,
and the memory locations used by it cannot be deallocated.

If a programmer wishes to allocate a variable from memory in a static fashion in
a method or in a class, this can be explicitly requested. For instance, the following
example introduces such a variable (Koenig and Moo, 2000):

int * pointer_to_static()
{

static int x;
return &x;

}

While the way the variable is allocated suggests that it is an automatic variable that
is local to the function, it is in fact allocated in the memory in a similar fashion
to global variables, which are also statically allocated variables. The reason for
introducing the variable in the above fashion rather than as a global variable is the
scoping; now only restricted visibility to the variable is provided, as it does not
pollute the program’s global variable space.

In the object-oriented setting, the Singleton pattern introduced by Gamma et al.
(1995) is sometimes used as a mechanism for static allocation. There, the goal is
to define a single instance (or a few instances) of a class, and make it known to all
subsystems. In practice, this is accomplished by allowing the class to be responsible
for the creation of the object.

2.2.2 Stack

As a rule of thumb, transient objects, i.e., those that live only a limited period
of time, are to be stored in the stack. The idea is that if an object lives a short
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period of time in any case, it is easier to allocate it in stack, because the object will
be deallocated automatically as the execution advances. Furthermore, using stack
memory is usually already reserved, and searching for a suitable memory area need
not be performed upon allocation. This issue further advocates the use of stack for
transient objects.

On the downside, automatic allocation and deallocation of variables creates a
potential problem for using references to variables in the stack, as the variables
can be erased and replaced by some other variables. Assuming that references are
always made from later activations, this can never cause a problem. In practice,
however, ensuring this in design and in particular in the maintenance phase can
turn out to be hard.

As an example, assume that a programming error occurs, and the following func-
tion is written instead of the above example of using static variables:

int * pointer_to_int() // WARNING: This is a negative example.
{

int x;
return &x;

}

Now, the returned reference points to a location in the memory, that is potentially
overwritten by any later functions that will be called by the program (Figure 2.1).
Obviously, the resulting execution easily becomes unstable, as the value of the
memory location can be altered seemingly nondeterministically as the program
advances. Furthermore, also methods that assign to this variable are dangerous,
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Figure 2.1 Erroneous use of stack-based variable
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since they can modify any data that is located in the stack, including parameters,
local parameters, and return addresses. This often results in hard-to-repeat errors
and complex debugging tasks.

An additional limitation of stack is that it is possible to compose a program where
all data is accidentally copied when making a method or function call, which may
result in exhausting the stack. Therefore, it is usually better to allocate big objects
from the heap, and only pass a reference as the parameter, which results in less
memory consumption (Figure 2.2). Both the stack and the heap can be used as the
host for the referred data structure. Disregarding the host, this creates a situation
where there are several ways to alter the data in the object, a situation referred
to as aliasing. In order to ensure that the object is not accidentally modified via a
reference, const definition can be used where applicable. Furthermore, following
Copy-on-Write practice, where any write access automatically creates a new copy,
can often be used to maintain the situation simpler.

2.2.3 Heap

All data structures whose size or structure can be altered dynamically must be
allocated to the heap. The rationale is that since their size cannot be known in
advance, it is impossible to reserve enough space from the stack.

Another reason that sometimes leads to using the heap rather than the stack is
that the object must live despite the phase of the program. In other words, if the
role of an object is global, then memory for it should be allocated from heap.
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As already discussed, inside methods such variables can be declared static, which
essentially make them global. Moreover, if large objects are to be allocated, they
can be allocated to the heap to avoid exhausting the stack, whose size can be limited
for a program.

If there is no automation regarding garbage collection in the run-time system, it
is a responsibility of the caller of this function to ensure that memory is released
when the data structure is no longer needed. At the same time, it is a good practice
to reset the reference to the area, so that it will not be accidentally used.

It is also important to remember that using the heap can be slower than using
the stack, as the running program may have to search for a suitable memory area.
Common run-time implementations are based on a list of references to available
memory areas hosted by the run-time environment, from which the suitable area is
selected. Another possible implementation is to use a stack-like pool of memory,
but when objects are allocated and deallocated, it is common that the pool becomes
fragmented and a list to free memory areas is still needed. Moreover, in the worst
case, none of the areas can be selected, and they are either to be merged to create
a larger memory area or some more memory is queried from the operating system,
which in turn is an even slower operation, involving context switching and all the
associated complexity.

2.3 Design Patterns for Limited Memory

When composing designs for devices with a limited amount of memory, the most
important principle is not to waste memory, as pointed out by Noble and Weir
(2001). This means that the design should be based on the most adequate data
structure, which offers the right operations. For instance, one should not use a two-
directionally linked list if one direction would be enough. In addition to this basic
principle, a number of other considerations are related to memory management,
where the objective is to use memory such that its implementation leads to minimal
leaking of abstraction, or, where applicable, the underlying implementation provides
improved properties, like for instance better performance if support can be gained
from cache.

In the following, we introduce some design patterns created for help in designing
small memory software. Many of the patterns discussed in the following have been
introduced in more detail by Noble and Weir (2001), but in a more generic setting.
Here, we focus on their application in the design of programs running in mobile
devices.

2.3.1 Linear Data Structures

In contrast to data structures where a separate memory area is reserved for each
item, linear data structures are those where different elements are located next to
each other in the memory. Examples of non-linear data structures include common
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implementations of lists and tree-like data structures, whereas linear data structures
can be lists and tables, for instance. The difference in the allocation in the memory
also plays a part in the quality properties of data structures.

The principal rule is to favor linear data structures. Linear data structures are
generally better for memory management than non-linear ones for several reasons,
as listed in the following:

• Less fragmentation. Linear data structures occupy memory place from one loca-
tion, whereas non-linear ones can be located in different places. Obviously, the
former results in less possibility for fragmentation.

• Less searching overhead. Reserving a linear block of memory for several items
only takes one search for a suitable memory element in the run-time environ-
ment, whereas non-linear structures require one request for memory per allocated
element. Combined with a design where one object allocates a number of child
objects, this may also lead to a serious performance problem.

• Design-time management. Linear blocks are easier to manage at design time, as
fewer reservations are made. This usually leads to cleaner designs.

• Monitoring. Addressing can be performed in a monitored fashion, because it is
possible to check that the used index refers to a legal object.

• Cache improvement. When using linear data structures, it is more likely that the
next data element is already in cache, as cache works internally with blocks of
memory. A related issue is that most caches expect that data structures are used
in increasing order of used memory locations. Therefore, it is beneficial to reflect
this in designs where applicable.

• Index uses less memory. An absolute reference to an object usually consumes 32
bits, whereas by allocating objects to a vector of 256 objects, assuming that this
is the upper limit of objects, an index of only 8 bits can be used. Furthermore, it
is possible to check that there will be no invalid indexing.

Linear memory allocation often requires that memory is reserved in advance, at
least partly. It is then possible to use the already reserved objects later in the user
program. This gives rise to some related basic principles to consider.

2.3.2 Basic Design Decisions

In the following, we introduce some basic principles helping in using linear data
structures. The purpose is not to introduce a complete checklist, but rather offer
some examples on how linear data structures can be benefited from when composing
designs.

Allocate all memory at the beginning of a program. This ensures that the appli-
cation always has all the memory it needs, and memory allocation can only fail at
the beginning of the program. Reserving all the resources is particularly attractive
when the most important or mandatory features like emergency calls, for instance,
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are considered, for which resources must always be available. In general, this type
of an approach is best suited for devices that have been optimized for one purpose,
and it cannot be generally applied in smartphones except only in some restricted
special cases.

Allocate memory for several items, even if you only need one. Then, one can build
a policy where a number of objects is reserved with one allocation request. These
objects can then be used later when needed. This reduces the number of allocation
requests, which leads to a less complex structure in the memory. The approach also
improves performance, as there will be fewer memory allocations, and cache use
is improved.

Use standard allocation sizes. With a standard allocation size, it is easy to reuse
a deallocated area in the memory when the next reservation is made. As a result,
fragmentation of memory can be prevented, at least to some extent.

Reuse objects. Reusing old objects might require using a pool of free objects.
This requires some data structure for managing free and used data structures. This
implies that the programmer actively participates in the process of selecting object
construction and destruction policy in the design.

Release early, allocate late. By always deallocating as soon as possible the pro-
grammer can give more options for memory management, because new objects can
be allocated to the area that has just been released as well. In contrast, by allocating
memory as late as possible, the developer can ensure that all possible deallocations
have been performed before the allocation. In particular, one should ensure that
objects occupying a large amount of memory are deallocated before allocating new
objects. The reason is that in many implementations, heap gives the first suitable
memory area, or, in a stack-like implementation, on one end. Then, when large
objects are deallocated before allocating others, fragmentation can potentially be
prevented, or at very least its effect can be lessened.

Use permanent storage or ROM when applicable. In many situations, it is not
even desirable to keep all the data structures in the program memory due to physical
restrictions. For instance, in a case when the battery is removed from the device,
all unsaved data will be lost. For such situations, it is advisable to introduce the
custom to save all data to permanent storage as soon as possible. This can be
eased with a user interface that forces the user to commit to completing an entry to
calendar or contacts, for instance. A similar fashion can be derived for static data,
such as dynamic library and application identifiers or strings used in applications.
Furthermore, even if there is no risk of losing data, it may be beneficial from the
memory consumption point of view to write large, seldom used objects to permanent
storage, so that the device’s memory is preserved for more important data.

Avoid recursion. Invoking methods obviously causes stack frames to be generated.
While the size of an individual stack frame can be small – for instance, in Kilo
Virtual Machine (KVM), which is a mobile Java virtual machine commonly used
in early Java enabled mobile phones, the size of a single stack frame is at least 28
bytes (7 × 4 bytes) – functions calling themselves recursively can end up using a
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lot of stack, if the depth of the recursion is not considered beforehand. However,
this seldom is a problem in applications that are meaningful in mobile devices in
practice, as they rarely perform computing that would require deep recursion.

2.3.3 Data Packing

Data packing is probably the most obvious way to reduce memory consumption.
There are several sides to data packing, however. In the following, we discuss
some alternatives that may bear significance. However, it should be emphasized
that selecting the right data structure as the basis of an implementation is usually
vastly more important than packing in the majority of practical designs.

Consider word alignment. Due to word alignment, it is possible that data structures
are not optimally located in the memory. For instance, it is impossible to allocate
variables to memory such that a 32-bit variable would be allocated in between two
32-bit words. Therefore, the data structure

struct S {
char c1; // Actually a boolean.
int i;
char c2;

};

cannot be allocated to two memory words, but three words are required: c1 reserves
8 bits from the first word, then i must be allocated to the next full word in mem-
ory, and finally c2 must be allocated to the third full word. The rationale is that if
the compiler automatically optimized the layout of data structures in the memory,
complications might result if the data structure was used as a mapping to a spe-
cific piece of hardware to the program’s memory space that only makes sense in
this particular order. This is a common case in low-level programming where the
abstraction of data types sometimes reveals its implementation. By changing the
data structure to

struct S {
char c1; // Actually a boolean.
char c2;
int i;

};

the developer can manage with two memory words, as c1 and c2 fit in the same
word. However, optimization for performance may prevent this, as it can be slower
to address variables that are located in the middle of a memory word. Moreover, a
way to instruct the associated compiler is also needed. Further improvement can be
gained by using only one bit for the boolean value, assuming that there would be
some other data to include in the saved bits. The situation is illustrated in Figure 2.3,
but with only 16-bit words due to practical reasons.
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Figure 2.3 Saving memory by considering data structure alignment

Use compression with care. In addition to considering the data layout in memory,
there are several compression techniques for decreasing the size of a file. Since
packing as a technique is simple it can be applied to both code and data structures, at
least in principle. In practice, however, one should be careful with packing, because
opening packed files can impair performance. The same applies to the generation of
compressed data, if a compressed format is used as the internal representation by the
device. Noble and Weir (2001) introduce three different compression techniques:

• Table compression, also referred to as nibble coding or Huffman coding, is about
encoding each element of data in a variable number of bits so that the more
common elements require fewer bits.

• Difference coding is based on representing sequences of data according to the
differences between them. This typically results in improved memory reduction
than table compression, but also sometimes leads to more complexity, as not only
absolute values but also differences are to be managed.

• Adaptive compression is based on algorithms that analyze the data to be com-
pressed and then adapt their behavior accordingly. Again, further complexity is
introduced, as it is the compression algorithm that is evolving, not only data.

In practice, it is not uncommon to use table compression and difference coding as
a part of or with adaptive compression.

Use efficient resource storage format. Based on Hartikainen (2005), one must take
special care to ensure that images, sounds, and movies are stored in the most efficient
way as it is very likely that they consume a considerable amount of memory. The
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same applies to format, compression, bit depths, sampling rates, and resolutions. It
is possible to save some space by combining many image files into one image file.
This way overhead from file headers can be minimized. If images are similar in
content then also compression might achieve better results. Finally, the most savings
from combining images can be achieved when there are lots of small images.

2.3.4 Discussion

The above patterns for memory management are not problem-free. As pointed out
by Noble and Weir (2001), when improving a certain property of software design,
it is common that some other part is downgraded or compromised. In general,
assuming that the appropriateness of memory-consciousness is acknowledged, tak-
ing information on implementation techniques into account can lead to smaller
memory consumption. However, a downside is that in many cases other properties
of the design can be harmed. This can involve at least the following aspects.

• Increased minimal memory usage. In anticipation of larger data amounts, it is
possible that the minimal amount of memory needed for data is more than in a
simplistic implementation.

• Decreased flexibility. When assumptions about the underlying implementations
are made, it is possible that some hardware configurations are invalidated.

• Downgraded performance. Using some form of compression can lead to decreased
memory use. However, encoding and decoding of data is harmful from the per-
formance perspective. In the simplest form, even packing a lot of information
into the same memory word can lead to downgraded performance.

• Longer initialization and shutdown sequences. As in some cases it is possible
to handle some of the operations associated with memory at the beginning or
at the end of the program rather than in the middle of the execution, startup
and termination of the program can become slower. Moreover, when some other
program with more modest requirements needs to execute the same initialization
sequence, the resulting execution can be considered unnecessarily slow.

• Potential unintuitiveness in designs. When an experienced designer composes a
design in a memory-aware fashion, some of the decisions can be unintuitive to less
experienced developers. Over a period of maintenance, this can lead to a system
that has all the downsides of different designs the developers have incorporated in
the system, but few of the benefits. This kind of a decayed system is increasingly
difficult to maintain, and its properties are often hard to recognize.

• Impaired reusability. The more one addresses particularities of a certain design
problem in the solution, the less likely it is that the same solution could be used
again in another context.

To summarize, it is a necessity to balance between the different requirements
addressing the properties of designs. In practice the ability to compose designs where
bargaining with different resources is needed, as it is common that the requirements
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change over time. For instance, when composing the first version of a certain
system, it is seldom subjected to tight timing and sizing budgets, but flexibility is
an important requirement. However, over time, it often becomes obvious that by
reworking some parts of the design some memory can be saved and performance can
be improved at the cost of flexibility that was considered desirable in the beginning,
but has turned out to be superfluous later in the development. Being able to alter
the goals of designs as well as the ability to understand their consequences is then
of crucial importance.

2.4 Memory Management in Mobile Java
It is a general guideline that the programmer of a system running on top of a
virtual machine should not attempt to optimize code based on the implementation
of a virtual machine. The reason is that this can be error-prone, like any reliance
on a particular implementation. Furthermore, a change in the implementation can
change the rules of the optimization. Unfortunately, in mobile environments where
memory is an important resource, also virtual machine and automated resource
management become at least a partially leaking abstraction.

2.4.1 Motivation

As already discussed in Chapter 1, even when the underlying infrastructure is in
principle managing resources automatically, it is important to consider data struc-
tures generated in a program. For instance, it is possible to harm garbage collection
by using a data structure in an ill-minded fashion (Bloch, 2001). As an example,
Bloch (2001) uses the following. Let us consider that we are implementing a stack
of references in a language based on a virtual machine. The stack is implemented as
a vector. An index (size) to the vector is used as the stack pointer in the abstrac-
tion as illustrated in Figure 2.4, where size, the actual vector, and some allocated

Stack

size

Objects stored in stack

Figure 2.4 Stack of objects
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items are included. When a new item is added to the stack, a new element in the
vector is taken into use and the value of the stack pointer is incremented by one:

public void push(Object e) {
ensureCapacity(); // Check that slots are available.
elements[size++] = e;

}

Similarly, when an element is removed from the stack, the stack pointer is decre-
mented by one. Whenever a new item is added, the new reference is added to the
vector:

public Object pop() {
if (size == 0) throw new EmptyStackException();
return elements[--size];

}

Behaviorally, this program runs fine, and it passes all the functional tests when
considering only input and output.

However, from the perspective of the garbage collector, it is unfortunate that
there can be ‘ghost’ references to objects that are unusable from the viewpoint of
the newly created stack abstraction, but remain valid and accessible in the vector
used in the implementation. Such ‘ghosts’ are a result of executing several push
operations followed by corresponding pop operations where the stack first grows
and then gets smaller (Figure 2.5). The garbage collector is not allowed to deallocate
them before the last reference to them has been erased, and having an accidental
unused reference counts in this respect. In this case, the problem can be solved by
setting vector element to zero in method pop:

public Object pop() {
if (size == 0) throw new EmptyStackException();

Stack/Vector

size

Objects stored in stack

Objects stored in vector
but not in stack

Figure 2.5 ‘Ghost’ references in a stack of objects
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Object result = elements[--size];
elements[size] = null;
return result;

}

More generally, considering the behavior of the infrastructure forms an impor-
tant part of composing programs even if the run-time infrastructure is principally
handling all the resource management. Unfortunately, it is often hard to make appro-
priate design choices without knowing the details of the underlying implementation,
and as a result, abstractions that do not internally behave as expected can be
encountered. In the following, we give some mobile Java specific aspects that can
be considered as design guidelines.

2.4.2 Rules of Thumb for Mobile Java

Downsizing memory usage depends on the design decisions of programmers. How-
ever, one should keep in mind that also other aspects than memory consumption
should be taken into account, including topics like flexibility, maintainability, and
performance. The principles discussed in the following have been introduced by
Hartikainen (2005) and Hartikainen et al. (2006).

Avoid small classes. As classes introduce considerable overhead, it is better for
memory consumption to merge small classes into bigger ones. In particular, inner
classes that are easily created without further consideration are classes as well
as regular classes. Usually inner classes contain only little functionality, like a
particular listener of some user action for instance, so the overhead of having a
class is relatively big in many cases. Using a lot of inner classes should therefore
be deprecated. Finally, keeping the number of different exceptions as small as
possible should be considered, because each exception is its own class with all
the associated memory-related overhead, although this is not always too explicitly
considered by developers. For instance, the memory consumption of an application
that was implemented using two different structural alternatives, shrank to almost
half from 14 019 bytes to 7467 bytes when the number of classes was reduced
from 14 to 1 without altering the behavior of the application (Hartikainen et al.
2006).

Avoid dependencies. If the dependency between classes is not vital, one might
save memory by removing references and using indirection via for instance an
artificial identifier or some other class whose use cannot be circumvented instead.
This saves at least an item from the constant pool of the class and in some cases
the loading of the other class, which may not be an issue for a single instance but
can be considerable in a large system.

Select the size when relevant, and manage vector/string usage. Vectors’ library
functions treat their contents as objects. Then, when something simpler is used as the
content, the programmer can reduce memory consumption by using the native type.
Moreover, whenever possible, by providing the size of the vector instead of using the
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default size one can reduce the memory footprint. Using strings may generate a lot
of garbage, especially if strings are manipulated, as all manipulations generate new
string instances. String buffer attacks this problem by reserving some extra space
as a buffer so that a string can be expanded without having to make a new instance.
This reduces the amount of generated garbage. If the size of a modified buffer
is known beforehand, the buffer should be constructed with a defined capacity,
or the ensureCapacity method should be called when using StringBuffer to
ensure the correct size.

Consider using array versus using vector. Figures 2.6, 2.7, and 2.8 introduce three
different implementations for storing a collection of integers. One implementation
is based on an array, and the two others are based on using Vector. Table 2.1
shows the allocations made by each method when the value of SIZE is 2000 as
introduced by Hartikainen (2005). Based on the figures, the difference between
array- and vector-based implementations is relevant both in terms of the number
of objects and used bytes. The methods that use vector effectively need to wrap
integers to objects to be able to store their values, which explains most of the dif-
ference. Between vector implementations the difference in terms of created objects
is minimal. On the other hand, an implementation where the correct size is given in
the constructor, allocates up to 24% less memory in terms of size. This is because
the other implementation (vectorImplementationSimple) has to increase the
size of the vector in cases where the virtual machine has guessed the size of the

//
// Array based implementation.
//
private void arrayImplementation() {

numberA = new int[SIZE];

for(int i = 0; i < SIZE; i++) {
numberA[i]= i;

}
}

Figure 2.6 Array-based implementation

//
// Vector based implementation.
//
private void vectorImplementation() {

numberV = new Vector(SIZE);

for(int i = 0; i < SIZE; i++) {
numberV.addElement(new Integer(i));

}
}

Figure 2.7 Vector-based implementation
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//
// Simple vector based implementation.
//
private void vectorImplementationSimple() {

// Initialization with default size
numberV2 = new Vector();

for(int i = 0; i < SIZE; i++) {
numberV2.addElement(new Integer(i));

}
}

Figure 2.8 Simplified vector-based implementation using a default size

Table 2.1 Using strings vs. using StringBuffer

Method Allocated bytes Allocated objects

arrayImplementation 8 016 1
vectorImplementation 40 000 2 002
vectorImplementationSimple 52 000 2 010

//
// String based implementation.
//
public void useString() {

String s = "";
for(int i = 0; i < AMOUNT; i++) {

s = s + "a";
}

}
Figure 2.9 Using strings

vector in an erroneous fashion. The capacity of vector increases in increments, and
therefore the difference in the number of created objects is not big.

Use StringBuffer. Concatenating String with the + operator or with the append
method consumes memory as the virtual machine needs to create temporary objects.
The results for using the procedures in Figures 2.9 and 2.10 are listed in Table 2.2
with the value of AMOUNT being set to 100 (Hartikainen, 2005).

Manage class and object structure. While enabling code reuse, inheritance can
sometimes cost memory, as all the variables from the parent are present in a child
object even though they might not be needed. When creating an object of a child
class also its parent class needs to be loaded if it is not yet loaded in the system.
The use of inheritance should therefore be carefully restricted to cases where it
is necessary and useful. In particular, classes should not offer methods that are
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//
// StringBuffer based implementation.
//
public void useStringBuffer() {

String s = "";
StringBuffer sb = new StringBuffer(AMOUNT);
for(int i = 0; i < AMOUNT; i++) {

sb = sb.append("a");
}
s = sb.toString();

}
Figure 2.10 Using StringBuffer

Table 2.2 Using strings vs. using StringBuffer

Method Allocated bytes Allocated objects

useString 39 000 450
useStringBuffer 304 5

not necessary. Alternate versions of methods can usually be avoided. In applica-
tion design, choosing between offering a big class with a lot of methods or many
smaller ones can also be difficult. In addition, cases where a hierarchy of classes is
constructed can lead to superfluous loading and memory consumption.

Generate less garbage. Reusing old objects as already described above is one
method to avoid making garbage.

Consider obfuscation. Since a majority of the content of a Java library often
consists of metainformation and strings, a topic we will return to in Chapter 4,
one can reduce footprint by obfuscating the names of public instance variables
and methods, classes, and packages to a smaller form. Obviously, one should not
obfuscate parts of systems that are visible to external parties. Moreover, standard
facilities cannot be renamed for obvious reasons.

Handle array initialization. Long arrays static initializer can consume a lot of
space as the Java compiler creates bytecode for static initializers of classes to
initialize the array. Improved tool support can offer solutions that consume less
memory. However, the savings will only be achieved with long arrays due to more
complex routines. In practice, the difference only becomes meaningful when the
size of an array is over 1000 (Hartikainen, 2005).

2.5 Symbian OS Memory Management

In contrast to infrastructure-managed memory handling used in mobile Java, in the
Symbian OS environment it is the programmer who is responsible for allocating
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resources in an adequate fashion. However, unlike in C++ programming in gen-
eral, the platform introduces a number of conventions for managing memory. While
they can be considered as platform specifics, many of the conventions in fact aim
at overcoming the known shortcomings of C++. In some ways, one can consider
that the goal of the conventions is to guide the programmer to use abstractions
in a fashion that prevents them from leaking, although in some cases this is only
partial. In this section, we provide an overview of these conventions, together with
the associated rationale.

2.5.1 Naming Conventions

Programming in C++ requires that memory is managed by the designer. The
way Symbian OS is solving this problem is to introduce naming conventions
that guide the developer to consider where variables are allocated, and to denote
this in their names. The most important naming conventions are introduced in the
following.

Class and Type Naming

• Class names start with C. Such classes are to be instantiated in the heap, and they
should be derived from CBase either directly or indirectly for adequate memory
management.

• Kernel class names start with D. The purpose of the convention is to separate
kernel classes from application ones.

• Mixin class names start with M. The purpose of such classes is to introduce
interfaces, and they are the only allowed form of multiple inheritance.

• Type names start with T. Such classes should effectively be used as a mechanism
for reserving memory for a data structure, never for an object that requires actions
in its destructor. Usually such classes are not allocated dynamically, but are either
automatic variables or data members of other classes.

• Enumerated types start with E.
• Resource names start with R. This will ease treating them accordingly in code. In

particular, any reserved resource must be released when it is no longer needed.

Method Naming

• Method names start with a capital letter.
• Names of methods that can throw an exception end with L. The purpose of the

convention is to emphasize the use of exceptions as well as to help in reviewing
completed programs.

• Simple getters and setters reflect the name of the variable.
• Complex getters and setters are always to be given the form GetSomeVariable

and SetSomeVariable.
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Variable Naming

• Instance variable names begin with i. The purpose is to highlight instance vari-
ables in programs. This highlighting becomes meaningful, as such variables
should never enable memory garbaging. Instead, their allocation and deallocation
is associated with the hosting object’s creation and destruction.

• Argument names begin with a, which separates them from other variables in
method code.

• Constant names begin with K. This is important, as constants can be allocated to
ROM.

• Automatic variable names begin with lower-case letters. Preferably i and a are
to be avoided in order not to risk mixing them with other variables.

Discussion

In practice, these conventions make Symbian programs easily identifiable as well
as somewhat different from standard C++ programs. Moreover, also standard type
names have been defined to reflect the conventions, which further eases recognition.
Some sample names have been introduced in Table 2.3.

Following the above conventions is under the responsibility of the programmer
in full, and errors in following the conventions will not prevent compilation if
additional tools are not introduced. While this sometimes leads to hard-to-trace
errors, it eases porting of other programs to the Symbian environment, assuming
that only a shallow porting is performed, and no Symbian OS specific practices are
introduced during its course. However, since supported libraries of C and C++ are
not supported in full, it is possible that complications will occur even in a shallow
embedding.

Finally, an error in following the conventions can be hard to track in a review,
which is practically the only way to discover problems. The effect of such errors is
considerable, as naming can also alter the way in which the different items should

Table 2.3 Sample Symbian names

Description Example

Type TInt
Instance variable iIdentity

Constant KMaxSize
Argument aExpression
Enumerated type EFalse
Kernel class DSession
Method LoadAddress
Resource RThread
Namespace NMyNameSpace
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be treated by the programmer, in particular when allocating resources, which we
will address later in this chapter.

2.5.2 Descriptors

Descriptors are the Symbian OS way to use memory in general, and they are
also used in association with strings. Using descriptors takes place using dedicated
descriptor classes. With strings, special macros denoting constant strings are used
to enable their proper treatment in code generation. The following choices can be
made by the programmer:

_L("Hello");
_LIT(KHelloRom, "Hello");
// String in program binary.

TBufC<5> HelloStack(KHelloRom);
// Data in thread stack.

HBufC* helloHeap = KHelloRom.AllocLC();
// Data in heap.

Of these formats _L is deprecated, and it should not be used except in test and
debugging code, as explained by Stitchbury (2004). The reason is that the format
has an overhead associated with constructing a run-time temporary TPtrC, which
is a type that will be discussed in the following.

In addition to acting as containers of data, descriptors include a variable that rep-
resents the length of the string, enabling them to guard against overflows. Therefore,
the following error would be noticed with a descriptor-based implementation but
not with vanilla C++:

// Vanilla C++.
char userid[8];
strcpy(userid, "santa.claus@northpole.org");

// Symbian descriptor based implementation.
TBuf<8> userid;
_LIT(KSantasMail, "santa.claus@northpole.org")
userid = KSantasMail;

The result of the error would be a panic that terminates the execution of the thread.
The descriptor hierarchy introduced in the Symbian environment is illustrated in

Figure 2.11. Of these, the following ones are probably the most commonly used in
actual programs:

• TDesC is the base class for all descriptors. As indicated by C at the end of the
name, which is yet another convention, the descriptor does not contain methods
for manipulating it.
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TDesC

TBufCBase TPtrC TDes

TBufC<n> HBufC

TPtr

TBufBase

TBuf<n>

RBuf

Figure 2.11 Descriptor hierarchy

• TDes is the base class for modifiable descriptors.
• TBuf and TBufC are descriptors that are to be allocated from stack.
• HBufC is the descriptor for allocating memory from the heap.
• RBuf is the modifiable version of HBufC. The type enables resizable descriptors,

which are sometimes practical. The relation between the descriptors is similar to
those between TBuf and TBufC.

• TPtr descriptors can be used to access (and edit) other descriptors. A constant
version of this type of a descriptor is referred to TPtrC. These two descriptors
are in fact references, which do not include a data buffer.

The layout of some commonly used descriptors is given in Figure 2.12. Consid-
ering the layout when composing programs is usually needed in order to perform
transformations between different descriptor types.

For practical applicability of descriptors, the following guidelines are often ade-
quate (Savikko, 2000):

1. Descriptors are commonly used instead of degenerating to using TText* format.
2. Form const TDesC& is used for parameters. This provides a light-weight (only

reference is passed), safe (no accidental modifications), and simple (any type
can be passed) solution.

3. Only instances of HBufC are allocated with new.
4. Conversions between different types of descriptors have been provided.

2.5.3 Exceptions

Symbian OS versions up to v.9.0 have relied on an in-house exception handling
mechanism referred to as trap harness, where the basic operations are similar to the
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Figure 2.12 Descriptor layout in memory

standard, but have different syntax and slightly different semantics in the imple-
mentation. Even beyond v.9.0, the proprietary exception handling mechanism plays
an important role as mitigating to the use of standard exception handling takes time.
While the semantics of the handling mechanism enable a more light-weight imple-
mentation than standard C++ exceptions, the main elements are the same. A trap
harness is used to denote the operation that is to be executed using macro TRAP (or
TRAPD),1 similarly to try in standard C++. Method User::Leave() corresponds
to throw, and the actions to be taken when an exception is thrown (statement
catch in standard C++) are usually implemented as a collection of conditional
statements that define necessary recovery operations.

Let us next consider a simple example on using exceptions in Symbian OS.
Assume that there is an enumerated type TMode with values EEat, ESleep, and
EWait. The values of the type are treated differently in a function called BehaveL.
This is achieved with the following definitions:

enum TMode {EEat, ESleep, EWait};

void BehaveL(TMode aMode)
{
switch (aMode)

{

1 The difference between the macros is whether the parameter used for identifying the potential exception has been
declared or not.
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case EEat:
// EEat specific behavior.
break;

case ESleep:
// ESleep specific behavior.
break;

case EWait:
// EWait specific behavior.
break;

default: // Beyond range of TMode
User::Leave(KErrNotSupported);
// Throws the exception.
} // switch

}

The above function is used by the following code snippet, where both trap harness
and exception handling are introduced:

for (TInt i=0;; i++)
{
// Trap harness.
TRAPD(error, BehaveL(static_cast<TMode>(i)));

// Exception handling.
if (error != KErrNone)

{
// Catch exceptions and recover from them.
if (error == KErrNotSupported) Recover();
} // if

} // for

Notice that TRAPD (and TRAP) are normal macros and they bear no special
meaning. The same holds for the routines recovering from the exception: they
are straightforward C++ statements.

Finally, one should note that creating trap harnesses is a laborious operation
from the performance point of view. Therefore, their number should be minimized
whenever possible. However, sometimes it is a necessity to introduce a separate
trap harness in a method that is not allowed to throw an exception, but which has
to call another method that may potentially leave, even if in some sense exception
handling seems superfluous. This is an unfortunate side-effect of the strict naming
convention.

2.5.4 Combining Exceptions and Allocation

There is one more particular issue regarding the use of exceptions in the Symbian
environment. A convention is that whenever memory is allocated from the heap,
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an overloaded version of operator new is used. This takes place in the following
fashion, assuming that we are instantiating a new object of class CMyClass:

c = new (ELeave) CMyClass();

The semantics of the overloaded new operation are such that if everything is
successful, a reference to the allocated object is returned. However, if memory runs
out, the operation automatically throws an exception, thus eliminating the need to
always check whether or not the allocation succeeded. Thus, one could replace all
the places where this function is used with the following code snippet:

c = new CMyClass();
if (!c) User::Leave(KOutOfMemory);
return c;

As repeating this with all allocations in code would result in tedious programming
tasks, overloading the new operator results in less code. An additional benefit is
that programs are not polluted by low-level checks on whether or not memory
reservation was successful, which releases the programmers to focus on application-
specific issues.

When all the operations associated with a certain object have been completed,
the object is deallocated. When performing this, resetting the value of the variable
used is performed according to common C++ principles:

delete c;
c = 0;

While similar to other environments, this is more important in the mobile setting
where applications can be turned on for an unlimited amount of time.

2.5.5 Cleanup Stack

A problem arises with the approach described above: what if references to objects
allocated from the heap happened to reside in the execution stack in the areas that
were removed due to the exception (Figure 2.13)?

In the Symbian OS environment, a special data structure has been defined, called
cleanup stack, that should host all references that might be lost due to an exception
(Figure 2.14).

The use of the cleanup stack is yet another task that is executed under the responsi-
bility of the programmer. Whenever a new memory area (or object) is allocated from
the heap so that the reference to it is an automatic variable that resides in the execution
stack, the programmer must push the reference to the cleanup stack. When the object
is deleted, it is again a task of the programmer to remove the reference from the stack.
Pushing a reference to the stack is implemented with the operation:

CleanupStack::PushL(c);
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Before an exception

Stack                   Heap
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Figure 2.13 Memory garbaging during an exception

Stack                    Heap                    Cleanup stack

Cleanup stack enables deallocation during an exception 

Figure 2.14 Using cleanup stack

where c is the variable being pushed. The corresponding pop operation is imple-
mented as follows:

CleanupStack::Pop(); // c

Notice in particular the use of comments to denote the popped variable. This is
important, as there is no generic tool support to help in checking that the right

TEAM LinG



Memory Management 51

variable is popped, and reviews are often the only practical option to study the
adequateness of the use of the cleanup stack.

If an exception takes place, the information in the cleanup stack is used to deallo-
cate reserved resources. If the execution proceeds normally, the programmer should
handle the removal of the reference from the cleanup stack, and optional deallocation
and resetting the value of the variable according to common C++ principles.

There are several details related to the use of the cleanup stack. Firstly, in addition
to the reference to the object, also a reference to a deallocating operation is included.
As a result, one can control whether or not a destructor is executed when deallocat-
ing an object when an exception occurs. This is implemented with base class CBase,
whose derivatives get their destructors called when cleaned from the cleanup stack
during an exception, as delete is given as the method, making the called opera-
tion in fact CleanupDeletePushL. For other classes, no operation is defined, and
as the result, only the allocated memory area the reference points to is deallocated.
Moreover, due to the use of the reference to the deallocating operation, in addition to
guarding against memory garbaging, the cleanup stack can be used for managing other
resources as well. For instance, using CleanupStack::ClosePushL(c) defines
Close as the deallocation method, and allows closing a session that is opened to a
resource. Finally, one can also combine operations. For instance, to pop and delete
an object with one code line one can use CleanupStack::PopAndDestroy, and
give a parameter that defines how many items are popped from the cleanup stack (for
example CleanupStack::Pop(3)that removes 3 items), which sometimes helps in
writing readable code. Still, it is good practice to document what items are popped
using comments, as otherwise reconstructing the contents of the stack for debugging
purposes in reviews is made overly difficult.

A further special convention is introduced for denoting that a method adds some-
thing to the cleanup stack. Such method names should end with LC instead of plain
L denoting the possibility of throwing an exception. Reflecting this with associated
Pop is appreciated by other programmers who maintain the same code base. In
contrast, LD denotes that something is removed from the cleanup stack, and the
associated operation is executed when it has been defined.

An interesting design detail is that the cleanup stack itself can be safely used even
if pushing an item to it may in fact cause an exception (hence the name PushL).
The reason is that there always is enough room in the cleanup stack for at least one
item. If the last slot was used, then more room is reserved, which may of course
fail if the operation runs out of memory. However, at this point the reference to the
new entry in the cleanup stack is already stored in the stack.

Finally, one should note that the use of the cleanup stack forces the designer to
consider allocation and deallocation of objects. As references can only be removed
from the top of the stack, deallocation of objects must follow the same guideline.
This practically requires a design approach where allocations and deallocations are
considered in an early phase of the development, and ad-hoc changes creating new
objects are to be avoided. Furthermore, one should only use the cleanup stack for
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references to objects that might be lost when an exception occurs, never to objects
that are parts of other objects in the form of instance variables, as this would at least
potentially result in a situation where the same object would be deallocated several
times (once via the cleanup stack and another time via the normal deallocation
routine), at least potentially.

2.5.6 Two-Phase Construction

While the cleanup stack works well in most cases, there is one problematic situ-
ation. This is what to do if an exception takes place when a constructor is being
executed. A reference to the object cannot be pushed to the cleanup stack, as it is
not available before the completion of the execution of the constructor. On the other
hand, resources may already have been reserved for the object, and releasing them
after throwing the exception can become impossible, as there may be no handle to
them. The following code example elaborates this:

C::C(int size)
{
iContents = new CVector(size);

for (i = 0; i < size; i++)
{
iContents[i] = new (ELeave) CItem();
}

}

Now, if one is able to allocate memory for CVector and for some CItems but not
for all of them, there is no way to deallocate the CItems that now exist; a thrown
exception has removed all references to them, because the hosting CVector is
destroyed. The situation is illustrated in Figure 2.15.

The Symbian OS defines a solution, where constructing objects is divided in
to two phases, which are the normal constructor and an auxiliary method, usually
named ConstructL. Then, operations that are necessary upon the construction
of an object are partitioned so that statements that cannot cause an exception are
located in the normal constructor, and all the statements that have the potential to
cause an exception are put in ConstructL. In addition, a reference to the object to
be constructed is pushed to the cleanup stack before calling ConstructL. At the
level of program code, a programming idiom referred to as two-phase construction
is used. We will address the idiom in the following.

When a new instance is created, the normal constructor is used, following the
above fashion:

CData *id = new (ELeave) CData(256);

TEAM LinG



Memory Management 53

Allocated
CVector

Allocated CItems

CItems to be allocated,
but memory runs out

Before exception

Deallocated
CVector

Allocated CItems

After exception

Figure 2.15 Failing constructor execution

This constructor can only leave when memory runs out, and in that case it should
have no resources that have been reserved. There are no facilities that would ensure
this, but it is a task of the programmer to design the constructor so that no exceptions
can take place in its execution. Next, a reference to the reserved data structure
is pushed to the cleanup stack, where it remains in a safe place in case of an
exception:

CleanupStack::PushL(id);

following the normal Symbian practice. When a reference to the newly allocated
object has been safely stored to the cleanup stack, we can call the second constructor
of the object:

id->ConstructL();

which should be used for calling any operations that potentially may leave; hence
the name ConstructL.

After ConstructL the actual operations that the object was created for can be
executed. When all tasks have been performed, the reference should be removed
from the cleanup stack in the normal fashion using CleanupStack::Pop().

Special care must be given to cases where inheritance plays an important role.
While standard constructors are executed automatically, executing the second-phase
constructor for a parent class can require special measures. For instance, one can
refer to the method with an explicit class name (form CParent::ConstructL)
and with a special method name (for example BaseConstructL).
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2.5.7 Factory Methods for Two-Phase Construction

As two-phase construction is a commonly needed procedure, auxiliary factory meth-
ods are often provided, which simplify the creation of certain collections of objects.
In Symbian OS, such methods are often provided for hiding the two-phase construc-
tion. Factory methods are called NewL and NewLC , and they encapsulate the use of
the cleanup stack and two-phase construction in object creation. Commonly used
implementations are as follows:

CItem::NewL()
{
CItem * self = new (ELeave) CItem();
CleanupStack::PushL(self);
self->ConstructL();
CleanupStack::Pop(); // self
return self;
}

CItem::NewLC()
{
CItem * self = new (ELeave) CItem();
CleanupStack::PushL(self);
self->ConstructL();
return self;
}

In practice, the implementation of NewL can be based on NewLC as well. This results
in the following routine:

CItem::NewL()
{
CItem * self = CItem::NewLC();
CleanupStack::Pop(); // self
return self;
}

Assuming that several objects are constructed, the routine generates less code in the
binary output, and therefore is a commonly used implementation. Furthermore, it
can be used without considering which second-phase constructor should be called.

Even if their use is commonly advocated, methods NewL and NewLC are not
generated automatically, but the programmer should implement them whenever
they are defined. Moreover, from the compilation or debugging perspective, these
methods are just like any other user-defined methods, and they do not have any
special characteristics. Their goal simply is to guide the developer using the code
to correctly construct the object. Therefore, constructors and ConstructL can be
introduced as protected member functions, which restricts the access to them from
other classes but allows sophisticated construction by child classes.
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2.5.8 Using Symbian Conventions

In this subsection, we give a sample Symbian program that can be compiled and
run. The goal of the program is to demonstrate the use of the conventions as well
as to provide a running Symbian example.

When composing a program we need to include Symbian conventions, including
the type system, in it. This is performed by including some header files. In addition,
we introduce a global variable console, which is used for communicating with
the user. The resulting code is the following:

#include <e32base.h>
#include <e32cons.h>

LOCAL_D CConsoleBase* console; // Write messages to console.

The program contains a procedure similar to the one that was used as an example
earlier. However, in this case, we do not use only functions but introduce a class that
has a constructor, destructor, and a method that performs some sample processing
and which is capable of leaving (BehaveL):

enum TMode {EEat, ESleep, EWait};

class CMyClass : public CBase
{

public:
CMyClass();
virtual ~CMyClass();
void BehaveL(TMode aMode);
};

CMyClass::CMyClass()
{
console->Printf(_L("Constructor\n"));
}

CMyClass::~CMyClass()
{
console->Printf(_L("Destructor\n"));
}

void CMyClass::BehaveL(TMode aMode)
{
switch (aMode)

{
case EEat:

console->Printf(_L("Eat\n"));
break;

case ESleep:
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console->Printf(_L("Sleep\n"));
break;

case EWait:
console->Printf(_L("Wait\n"));
break;

default: // Beyond range.
console->Printf(_L("Exception raising.\n"));
User::Leave(KErrNotSupported);
} // switch

}

Next, we introduce a procedure that creates an instance of the above class and uses
its services. To use the cleanup stack, we also introduce an automatic variable that
will be used to store some dynamically allocated heap-based data:

void MyOperationL()
{
CMyClass * c = 0; // Automatic variable

for(TInt i=0;; i++)
{
// Construction
c = new (ELeave) CMyClass();
CleanupStack::PushL(c);
console->Printf(_L("Push.\n"));

// Use
c->BehaveL(static_cast<TMode>(i));

// Destruction
CleanupStack::Pop(); // c
console->Printf(_L("Pop.\n"));
delete c;
c = 0;
} // for

}

Then, we need to give a function that will instantiate a console to which the above
messages can be printed. In addition, the operation introduces a trap harness, which
catches exceptions and recovers from them:

void MyConsoleL()
{
console = Console::NewL(_L("Cleanup example"),

TSize(KConsFullScreen,
KConsFullScreen));

TRAPD(error, MyOperationL()); // Trap harness
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if(error != KErrNone)
{ // Exception handling.
console->Printf(_L("Exception handled.\n"));
} // if

console->Getch(); // Get and ignore character
delete console;
console = 0;
}

Finally, we introduce the main function E32Main, which will be the starting
point of a Symbian executable. In addition, we introduce two auxiliary macros
(__UHEAP_MARK and __UHEAP_MARKEND) that are used for managing the heap
usage, constructing the cleanup stack, which would be handled by the Symbian OS
GUI framework if we were implementing a real Symbian application but which
must be created by the programmer in console applications, and calling the above
operation using a trap harness. While such nesting is not really necessary in this
program because no real operations are performed to recover from an exception, it
is used to demonstrate the option in the following:

GLDEF_C TInt E32Main()
{
__UHEAP_MARK;
// Get cleanup stack
CTrapCleanup* cleanup=CTrapCleanup::New();

TRAPD(error, MyConsoleL()); // Trap harness
if (error!=TKErrNone)

{
User::Panic(_L("EPOC32EX"),error));
}

delete cleanup; // Destroy cleanup stack
__UHEAP_MARKEND;
return 0; // and return
}

This completes the sample program, which is now ready for compilation and exe-
cution.

2.6 Summary

• Memory-related considerations are a necessity for implementing applications that
will be run on a device that is constantly turned on.

• Preallocation and static reservation simplify memory management. Therefore,
their use should be preferred especially when composing robust software.
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• Linear data structures are preferable over their non-linear counterparts. The ratio-
nale is to reduce fragmentation as well as enable more efficient cache usage.
Furthermore, it is sometimes possible to perform checks for the used range.

• Compression can be used to reduce memory consumption. However, its use can
lead to increased processing of data, which in turn is commonly considered harm-
ful in the mobile setting.

• Despite the use of patterns resulting in memory-effective code, composing main-
tainable programs requires balancing between contradicting requirements, some
of which may be violated due to memory-effective design. Then, one should
carefully consider a suitable compromise of different properties.

• Even if in the end a virtual machine, like in mobile Java, would be responsible
for releasing unused resources, programmers’ actions can considerably affect the
resulting memory consumption.

• Design idioms and patterns are available for handling memory management. For
instance, the Symbian environment defines a comprehensive set of conventions
for managing memory in the C++ environment.

2.7 Exercises

1. What kind of data structure would be adequate for a calendar in a mobile device?
How would adding of new items or deleting those that already exist be imple-
mented? Could closing the application and opening it again change the data
structure? What would such a dynamic data structure enable? How about the
structure that is stored in the disk, assuming that the used physical implementa-
tion consists of flash memory?

2. How would you implement a data structure similar to the Symbian OS cleanup
stack, but which would allow removal of items from the data structure based
on name, reference, or some other identifier? How does your implementation
correspond to the Symbian OS solution in terms of complexity and performance?
Could the data structure be used for garbage collection as well?

3. What problems can you find in the following excerpt of a Symbian program?
How and in what situations would they degenerate the program’s execution?
How should the program be corrected?

// Operations to be identified in the screen.
enum TMode {EEat, ESleep, EWait};

// Temporary resource for drawing.
class CMyResource

{
public:

CMyResource(CScreenShot & aParent);
ConstructL();
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~CMyResource();
void ShowEatingItemL();
void ShowSleepingItemL();
void ShowWaitingItemL();

private:
...
};

// Draw the right symbol to myWindow.
void Behave(TMode aMode, CScreenShot& myWindow)

{
CMyResource *res = 0; // Local drawing resource

// Local two-phase construction.
res = new CMyResource(myWindow);
res->ConstructL();
CleanupStack::PushL(res);

// Selecting symbol to draw.
switch (aMode)

{
case EEat:

res->ShowEatingItemL();
break;

case ESleep:
res->ShowSleepingItemL();
break;

case EWait:
res->ShowWaitingItemL();
break;

default:
User::Leave(KNoSuchActivity);
break;

} // switch

// Drawing complete, resource no longer needed.
CleanupStack::PopAndDestroy(); // res
delete res;

// Fix figure to the screen.
MakeImagePermanentL(myWindow);
}

4. Compose a procedure that calls itself recursively, and passes an object containing
an array of 25 integers (each integer is 4 bytes, so the size is at least 100 bytes)
as a parameter. How many rounds can the program execute in the Symbian
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OS environment? Are there differences in the emulator and an actual Symbian
device? What if the program is modified to reserve memory from the heap in a
similar fashion? Does the allocation from stack or from heap affect performance?

5. What kind of design choices could be made to ensure that there are always
enough resources for making an emergency call? Is reserving memory enough,
or should there be also other means?

6. In what kinds of situations would it make sense to offer only NewL or NewLC,
but not both, in the interface of a Symbian OS class? What are the fundamental
differences in the use of these two methods?

7. What would be a realistic assumption for a third-party programmer on the amount
of memory that will be made available for her program, assuming that only
application-specific issues, not including any infrastructure requirements, are
considered? How does the use of graphics, sounds, etc. affect the requirements
of the application?
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Applications

3.1 What Constitutes an Application?

In the conventional computing setting, programs can often be taken as transforma-
tors that translate a given input to a corresponding output. In practice, however, mod-
ern pieces of software take input and generate corresponding output in microscale,
rapidly reacting to smallish changes in their environment like a touch on a touch
screen, moving a cursor, or pressing a button. Moreover, changes can take place in
parallel, i.e., rather than being sequential as traditional programs, applications have
become reactive systems, which wait for any events that might affect them and
potentially react to the events with some response. As events can arrive in different
order or even in parallel, applications may become more complex entities, if they
assume the responsibility for controlling the executions. Rather, the environment,
for instance the user, associated network, or some other actor, more commonly
takes control of what should take place.

The most basic definition of an application is that it is a piece of software that
can be started and terminated individually, and that it performs a certain task. Fur-
thermore, it is often necessary to associate a user interface with an application,
as otherwise observing the behavior of the application might be difficult. In this
chapter, we use the term ‘application’ in the broad sense, which includes the nec-
essary user interfaces and related facilities, although the focus is placed on actual
application software and common details of graphical user interface programming
are overlooked.

In the technical sense, an application can be taken as a piece of executable code
that can be triggered to execution by the user or the system under some special
conditions. This, however, is not a necessary requirement but it is also possible
to use an approach where one common executable loads all applications from a
dynamic library, for instance, and calls a certain routine to activate the application
using the factory method approach described above. In addition, in some cases, the
application, say, a command shell, that starts other applications forks, i.e., creates
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an identical replica of itself and uses the newly created copy for executing the other
application.

In order to declare a piece of software an application, an interface mechanism
must be defined, which tells the execution infrastructure that we are dealing with
an application. The required definitions to glue an application to the infrastruc-
ture can be simple, or advocate a more complex definition of the application. For
instance, in conventional C and C++ programming, such a definition is function
main, from which the execution of the application begins. Usually, the more com-
plex approaches also aim at guiding the developer to design using inheritance or in
accordance to a certain design pattern, not just create an entry point for an applica-
tion to begin its execution. In particular, in many cases platforms define a specific
way to link applications to the surrounding infrastructure. A detail that has an effect
on how the application is to be used is the depth of its integration to the rest of the
system. At least the following cases can be identified:

• Application is independent of the rest of the system. Such types of applications
are self-contained, and for the most part, they simply rely on the platform’s
low-level services. Implications for other applications can often be neglected.

• Applications share library code. In principle, this in fact takes place when the
platform provides services to new applications. However, the more application-
specific the library is, the more effort must be invested in keeping applications
compatible with each other when the library version is altered.

• Application directly shares data with some other application. For instance, one
can compose a personal information management and planning center application
that collects all the data from contacts, todo list, calendar, and so forth. Then,
when updates are made via one application, the data should be made available
for other applications as well. As a result, applications are becoming tangled.

• Applications can be embedded in each other. For instance, when sending a mul-
timedia message, it may be possible to run a camera application invisibly to the
user to record the data to be sent.

The depth of integration is an obvious source of complexity. In particular, testing
all the functions in different cases can be difficult.

3.2 Workflow for Application Development

Perhaps the most important design concern in the design of an application running in
a mobile device is the consistency of user experience. This aspect can be affected by
a number of design choices taken during the development of applications, resulting
in consistent usability.

While the consistency of user experience is important, its design in the mobile
setting is hard and requires taking users into account during design (Kangas and
Kinnunen 2005). One principal problem is that in many cases users wish to perform
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rapid, focused actions, instead of long-lasting sessions, where users sometimes per-
form exploratory tasks to locate a certain feature, as can be the case with a desktop.
Actions must be simple and single yet focused, and they must be accomplished
with ease and using only a minimal number of keystrokes (Salmre 2005). This has
an obvious effect on the way in which applications must be designed.

A common workflow for the development of applications for the mobile setting,
with special focus on usability and user activities, has been defined by Salmre
(2005), consisting of:

1. scoping,
2. performance considerations,
3. user interface design,
4. data model and memory concerns, and
5. communications and I/O.

In the following, we summarize this workflow.

3.2.1 Scoping

Before starting the design of an application for the mobile setting, one must have
the fundamental purpose of the application, including both what the application
can do and what it cannot. In particular, when implementing a mobile version of a
desktop application, a subset of functions must be selected that will be included in
the implementation. If needed, the features can be given relative importance, which
allows the determination of the first set of functions. Furthermore, the physical
characteristics of the device must be taken into account, if they imply restrictions.

Scoping can be helped by conceptualizing the application with pictures, mock-
ups, and creating prototypes. This will also help when communicating the scope
and the purpose of the application to other developers. One should also consider
the relative importance of the functions to users. For instance, if clock times are
rarely entered, it may be enough to use a somewhat inconvenient user interface;
while the operation may be annoying, it is needed so seldom that the user can still
execute it. However, for entries that are frequent, a well-considered user interface
should be implemented.

3.2.2 Performance Considerations

When scoping has been completed, the next step is to consider performance. To
begin with, general responsiveness metrics are needed for applications. This inclu-
des, for instance, defining how fast it should be to open a menu in the application.
The overall responsiveness is an important part of the user experience. In addition
to generic responsiveness, specific metrics should be created for the most important
scenarios. This forces the application designer to consider the chains of events that
allow the user to carry out certain procedures.

One way to design for performance is to use an older (or simply less capa-
ble) hardware for early experiments. While this gives a pessimistic view on the
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possibilities of implementing the application, the design can be initiated before the
actual target device is available, and with lesser assumptions, it is more likely that
the users will be satisfied with the performance.

All assumptions should be tested with a real implementation. A commonly used
approach is to start with some key features and their performance, and to continue
to less important features only when the key features have an acceptable level of
performance. Taking into account that in the future more will be expected of the
application is usually a good rule of thumb. In particular, an idea where the code is
first completed in full in order to determine the worst bottlenecks is usually flawed,
because the overall performance is often the most important aspect. Then, data
structures, their layout in memory, used algorithms, and the way the user interface
is constructed are issues that should be considered first, not individual lines of code.
In other words, root causes of performance problems should be focused on instead
of their symptoms.

One should also consider that overly focusing on performance can be harmful for
portability. Therefore, while it is important to consider that the selected implemen-
tation principles are able to satisfy performance requirements, one should not be
bound to optimize the development solely for performance. Rather, a reality check
on what can be realistically accomplished is to be performed.

3.2.3 User Interface Design

As already discussed, before advancing to the technical design of a mobile appli-
cation, it is important to study key use cases and features that characterize the
application. If the performance provided by the prototype implementation is good
enough in studies, it is time to focus on the right user interface.

Besides scoping and innovations, one can consider end-user productivity and
responsiveness as the most important principles of user interface design. The former
means that the actions that are typical and natural for the end-user can be easily
and rapidly carried out. The latter means that the user has the feeling of being in
control while performing the activities, which commonly implies minimizing the
time the user has to wait for activities to complete, and even more importantly, the
user is never left wondering what the device is actually doing. The design is further
hardened by the tendency of users to perform repeated actions if no response is
observed immediately. This encourages designs where feedback on user-initiated
operations is given, even if the actual operation is still in progress behind the
scenes. This may require a strategy where the user is tricked into believing that an
already completed task takes place only on her command in a proactive fashion (for
instance, some application can be always active even if the user has never started
it), or that the device lets the user believe the task is completed while it in fact is
not (for example, the phone claims to be ready after a reboot even if it has not yet
loaded contacts from SIM). Moreover, in some cases one has to design an enforced
flow of control, but at the same time avoid the user becoming frustrated. A further
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challenge is to keep the user aware of what has really been saved to disk, if the
user wishes to turn off the device.

Of particular importance in designing the user interface are the available facilities.
It is not realistic to copy the user interface greeted in one type of device to another
type of device, and expect that usability and user experience will be preserved.
Instead, one should consider what seems natural to the user when a certain type
of device is available and use that as the starting point of user interface design.
The situation is worsened by the fact that different actions are natural with different
devices. For instance, it seems completely realistic to edit Excel macros when using
a Communicator type of device, but being able to read the figures might be enough
in a normal mobile phone where more restricted resources are available. In general,
the design is of course influenced by the size of the screen as well as the restricted
input mechanisms. To some extent, this can be solved by using PCs for some of
the tasks, and only transferring the outcome to a mobile device.

In addition, one can consider whether to aim at special-purpose devices and
applications or to a single tool that does everything. One view to this problem is
provided by Norman (1998), where an application- and purpose-specific approach
is considered to lead to simpler use than a multipurpose approach. In practice,
however, it seems that also the latter approach is constantly gaining interest, at
least when considering available devices. One contributing factor to this is the cost
of manufacturing. New hardware features can be cheaper when they are integrated in
a cellphone rather than implementing them in a separate device. Moreover, software
features can be virtually free.

3.2.4 Data Model and Memory Concerns

As already discussed, mobile devices offer rather restricted facilities for application
development. This is related to unit price of devices, where more sophisticated
hardware leads to an increasing price per device, but also power consumption and
the size of the device imply certain restrictions. The outcome can be a device where
several handicaps exist, but the assumed use cases can be implemented with ease.

The way in which data is represented has an impact on how it can be located in the
memory, on how the system behaves in peak conditions, and on how the application
disposes data. For an application developer, this implies that data structures and
memory use in general must be carefully considered. Also dynamically loaded
libraries can be considered as an issue that is closely related to data model and
memory concerns, as their technical implementation can rely on DLLs.

3.2.5 Communications and I/O

The way communications and I/O are defined determines how the application com-
municates with the resources that are located beyond its control. This includes
devices’ internal resources, such as files and subsystems, as well as resources that are
external to the device, and require a communications mechanism before an access.
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For instance, the latter includes socket-based communications, files on servers, Web
Services, and remote databases, to name some options.

The way in which the application handles local and remote resources has a major
effect on usability. Accessing local resources is usually fast, whereas communicating
with remote resources is slow, at least with the current implementation techniques.
A decision to load some data from a remote location in anticipation of the user’s
actions can in some cases result in major improvements in user experience. How-
ever, in general this is impossible, and should only be carried out in special cases,
where users’ intentions can be accurately modeled in advance.

Another important aspect to consider with communications and I/O is the level
of abstraction of transmitted and stored data. For example, one can consider the
following levels of abstraction in using files:

1. binary streams, where the data is stored in a fashion that is unreadable without
auxiliary software,

2. text streams, where data becomes more readable, but may still remain somewhat
unstructured and unreadable for a human reader,

3. XML forward-only readers and writers, where more meta-information is in-
cluded,

4. XML Document Object Model, where complex automatic processing of included
data is usually enabled.

The different levels of abstraction offer different facilities for manipulating data.
The more abstract the level, the easier it is to process the data and the more self-
contained the files are. This implies that developers’ productivity improves, as
programming, debugging, and maintenance will be easier, and it is more likely that
potentially available standard components can be used, or reuse options exist within
the company. However, at the same time the amount of overhead in transmitting,
processing, and storing increases, which means that the approach may not be suited
for cases where a large amount of data must be processed in a short period of
time. This can lead to contradicting requirements in application development that
complicate the design. The design is made more difficult by the fact that it is seldom
a practical way to include several implementations of the same feature in the device,
even if their characteristics would be different.

In addition, costs associated with the connection may become an important factor
if a cellular data connection is assumed. For instance, one may wish to download
as much data as possible when wireless LAN connection is available, but accept
only minimal connectivity when using GPRS.

3.3 Techniques for Composing Applications

In this section, we introduce some implementation techniques that have been com-
monly used in the implementation of applications in a graphical user interface
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environment. These include event-based programming, the use of the model-view-
controller (MVC) model, and the use of auxiliary files that can be used to describe
attributes of applications, such as language settings and structural properties includ-
ing menus, for instance.

3.3.1 Event-Based Programming

A commonly used approach to the programming of a graphical user interface is to
allow every GUI element to generate events. For instance, when the cursor moves
over a button, an event can be generated. Similarly, a button click can bear special
significance only when executed over a certain graphical element depicting a button.
This approach makes the graphical user interface an event generator, where events
reflect the different choices of the user. Associating operations to the events provides
a way to program such a system.

In general, callbacks are used to link events and code. Callbacks are special oper-
ations where one can register an operation that is called when a certain event, like a
key press, occurs in an execution. The technique is commonly used in implement-
ing event-based systems not only in the mobile setting but also in the workstation
environment.

Implementing a callback can take many forms. One way is to pass a reference
to a function during registration. When an event occurs, the function is called via
the reference. An object-oriented implementation technique for event-based pro-
gramming is to follow the Observer design pattern (Gamma et al. 1995). It allows
registration of so-called observer objects to be interested in the changes in the state
of a subject, which in turn commonly represents data. In the context of event-based
programming, a common implementation is that events act as subjects, and when
an application wishes to be notified about an event, it registers itself as the event’s
observer. Obviously, multiple observers can be registered to an event. Then, the
occurrence of the event results in notifying all the observers.

Fundamentally, the difference between event-based programming and the tradi-
tional programming approach is that in the traditional approach, the service caller
knows the provider of the service, whereas in the event-driven model, the event
source only creates the event, and it is up to the components that have regis-
tered themselves to handle the event to perform their actions. The main benefits of
event-based programming are simplicity and flexibility. The approach allows event
handling to be serialized so that generated events are handled one by one. Usu-
ally, an approach is used where one event is handled in full before regarding the
next event. This requires that programmers are prepared for events that can happen
in any order, thus removing any causality that could be expected from the user
interface. This in turn implies that the application must be solely based on event
handling, and that any long-term executions must be executed in the background
to avoid blocking of the user interface.
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3.3.2 Model-View-Controller as the Application Architecture

In the following, we discuss the model-view-controller (MVC) design pattern. Intro-
duced by Krasner and Pope (1988) the pattern has become a commonly used
approach to systems relying on a graphical user interface. In addition to MVC,
also the presentation-abstraction-control (PAC) pattern (Buschmann et al. 1996) is
advocated by B’Far (2005) for the mobile environment. However, in many ways the
patterns share the same ideas, and therefore only MVC is introduced in this context.
Furthermore, also the Observer pattern is related to MVC, as in many ways one
can consider a model as a subject whose state changes are notified to models and
views. An event-based implementation can also be used, where the different events
trigger operations into execution.

Following the ideas of separation of concern, the purpose of the MVC model is to
separate all the functions of the application to one of the following three categories
(Jaaksi 1995; Krasner and Pope 1988):

1. Model, which contains data structures of the application.
2. Views, which contain user interface(s) of the application.
3. Controllers, which allow the user to control the behavior of the application.

Figures 3.1 and 3.2 illustrate the structure of the model and operations associated
with it. In the following, we discuss the different parts of the model in more detail.

Model. The role of the model in the MVC pattern is to host all the information
regarding the data of the application. In addition, all operations regarding the data
are included, following the guidelines of data encapsulation. The model is also
usually responsible for managing data representation in permanent memory, as it
can directly save and load data as needed. Whenever the data is manipulated, the
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initialize(Model)
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Figure 3.1 Model-view-controller architecture
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Figure 3.2 MVC architecture and dynamic behavior

model informs views and controllers about the change. As models remain relatively
independent of all user interface operations, they can usually be reused in different
environments.

View. Responsibilities of the view in the MVC design pattern are related to dis-
playing the data to the user. Whenever a model is updated, the views that are
registered to observe the model are notified about the update. Then, they query
information about the update and display the upgraded data. A single application
can contain multiple views for different purposes. This adds flexibility, as it is
possible to select the view to use on the fly. A common problem in the use of
the approach is that views can sometimes update themselves at an unnecessarily
high frequency when a number of updates are made. While optimizations can be
composed, the result is often a more complicated design. Views can sometimes be
reused. A prerequisite for this is that the drawing operations are applicable also in
the new setting. For a mobile device, this means that either a scaling mechanism
is implemented, which may be harmful for performance, or reuse is restricted to
devices whose screen resolution is compatible enough. Further restrictions result
from properties of the screen, such as the number of colors or refresh frequency.
Based on the above reasoning, the most common form of reuse in practice is prob-
ably the implementation of a collection of compatible view elements for a certain
purpose, like statistics for instance. This enables the use of the same code in different
applications. Furthermore, libraries can be implemented for certain domains that use
similar facilities.

Controller. Responsibilities of the controller in the MVC model are related to
controlling the application. The most common implementation is that a controller
listens to the commands the application receives and translates them into a form
that can be interpreted by the model. In a mobile setting, the option to reuse a
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controller is usually related to the configuration of the device that is available,
because otherwise usability of the system can be degraded. For example, by creating
a new configuration for the keyboard where number keys are in different locations, a
previously intuitive control system can be ruined. Sometimes views and controllers
can be integrated, if their operations are closely coupled. Integrating the components
may make their reuse more difficult, as they usually become dependent on each
other. Still, keeping the two concepts separate usually clarifies the structure of the
application.

3.3.3 Auxiliary Files

On many occasions, applications may be relatively simple as such. However, when
connected with graphics, their look and feel can improve considerably and in fact
such data can form a considerable factor of memory consumption of a mobile appli-
cation. Similarly, other aspects can also be separated from the actual application and
presented in terms of so-called resources, where auxiliary data about the program
can be stored. In the following, we discuss typical resources and other auxiliary
files that are commonly needed by applications.

• Menus. In many environments, resource files can be used to define the structure
of menus that are offered by applications. The rationale is that in order to modify
menus, application code need not be modified, but it is enough to redefine some
elements in the auxiliary file. Moreover, different language versions can benefit
from this opportunity. In the simplest form, a menu is represented as a set of pairs
that define a menu item and an operation associated with it, or a reference in one
form or another. Then, the application concept is made responsible for initiating
the execution of the correct operation, the identity of which can be passed as a
parameter to some special method (for instance HandleMenuCommand). Obvi-
ously, by allowing additional menus as operations it is possible to create menu
hierarchies.

• Binary data. Binary data is commonly needed in programs. For example, graphics,
such as icons, are used for creating a special look for applications. While there are
numerous formats that can be used in general, different platforms may have some
restrictions on their use in different contexts. Connecting graphics to program
behavior can take a similar form as with menus. However, icons can also bear
significance on how an application is integrated to the rest of the system, enabling
starting of an application using the icon. Similarly to graphics, other types of
binary data can be used as well. For instance sounds and audio data are commonly
used. Moreover, binary data could be used for security features.

• Localization information. Localization information is something that is commonly
needed in applications. Such information includes definitions needed for multiple
language versions. In some cases, they can be given together with other resources,
but this is not a necessity. Instead, any file can be used for aiding in localization,
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assuming that the rest of the program is composed respecting the localization
principles. However, when the underlying platform offers its own practices for
this, the platform’s fashion should be predominantly used.

• Other auxiliary files. Auxiliary files needed by applications are many. For in-
stance, there can be data files whose contents are needed for creating a valid
initial state. Usually, one should compose applications so that even if some of
the data files are missing, it would be possible to run the application. A related
issue is that in some systems, it is advisable to implement applications such that
they always have a default data file into which data can be saved if no filename
is given for saving it. In addition to data files, there can be settings or profile
files. Their goals can also be many, including for instance personal preferences or
information regarding the properties of available resources. Again, it is commonly
a good design goal to be able to run the application with minimal or even with
fully missing settings files.

The importance of different auxiliaries is increasing. Firstly, facilities of mobile
devices have improved, and as a result, it is possible to compose systems that
benefit from better graphics and sound, for instance. Secondly, also expectations on
wireless facilities have been increasing. Therefore, including data files for improved
look and feel takes more memory than used to be the case.

3.3.4 Managing Applications

Like all applications, also applications in mobile devices need to be managed. This
implies a number of operations as well as a format that is used to host applications
before their installation. In this section, we address these issues.

A number of management operations can be associated with applications run-
ning in mobile devices. For instance, Riggs et al. (2001) introduce the following
operations in the mobile Java environment:

• Retrieval. Applications can be retrieved from some location in the network or
some other media. For instance, physical media such as memory cards can be
used. However, for wireless devices, downloading applications over the air (OTA)
is probably the most prominent alternative.

• Installation. Installs an application to a device. The installation may include
several intermediate steps, such as verification that the installation is allowed,
and transformation, where the downloaded software can be transformed to a
suitable execution format.

• Launching. The application must obviously be startable once it has been down-
loaded and installed in the device.

• Version management. It may be necessary to upgrade already installed appli-
cations when new versions are released. It is also possible that upgrading one
version of a subsystem (or application) requires an upgrade of other parts of the
system as well.
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• Removal. Applications can be removed from the device when they are no longer
needed, or the storage space occupied by them is needed for some other use.

It is possible that applications that the user has downloaded are subjected to a
different treatment than those that have been pre-installed by the manufacturer.
For instance, the removal of the phone application is probably prohibited in every
mobile phone, whereas uninstalling any user-installed piece of software is most
likely expected. However, the manufacturer may also include application software
in the phone that acts similarly to user-installed software. This software may intro-
duce additional functions that have been implemented by a third-party company,
and which are available for trials before an actual purchase. Moreover, they may
sometimes be used for a restricted time before the payment.

In order to manage applications, it is common that they are delivered in different
types of packages. The rationale for this approach is that while it is possible to
copy files directly to a device’s file system, like for instance in some Communica-
tor types of devices, one should not expect that all users of mobile devices use a
computer regularly. Instead, a user should be able to download a new game while
traveling on a bus, resulting in a requirement to use over-the-air (OTA) down-
load using the actual device only, not a development PC. Furthermore, it may be
unacceptable to reveal all the files of an application, as this might induce prob-
lems with digital rights management, for instance. As a solution, most, if not all,
mobile devices that can be extended with new software introduce also a format
to be used for delivering the software. The contents of these formats can include
executables, figures, auxiliary files including audio, graphics and video, and other
resources. Packages can also include additional information that is used in the
installation process as they can include information about supported platforms,
versions that they rely on, and the size of the installation. Based on this infor-
mation, it is possible for the installer to notice that the package is incompatible
with a device. Moreover, the inclusion of version information can also be used
for implementing a system where upgrades can be loaded on top of an already
installed system, which makes the system more flexible. Similarly, information
about uninstallation, licensing, payment possibilities, and so forth can be included.
In addition to actual packaging, some environments require that the package is
associated with a cryptographically created certificate. While this does not pre-
vent the installation of potentially malicious software – the creator of the certificate
can be misled, for instance – the certificate reveals the source the software orig-
inated from, which in turn can be used for stopping the application from further
spreading.

Finally, assuming strict requirements with respect to installing only packaged
applications to devices can lead to superfluous generation of installation packages
at development time. In particular, applications that require some particularities of
the device that cannot therefore be tested with the emulator only can force one to
compose numerous installation packages as the development progresses.
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3.3.5 Practicalities

It is common that different systems define their own ways to attach new applications
to them. This is an immediate source of incompatibilities between different systems,
because many mobile platforms require one to follow the established practices, and
offer little room for variations for compatibility reasons. Still, the goal of the concept
of an application is the same, to enable launching of new applications.

Another detail worth addressing is the complexity of the imposed application
infrastructure. Some systems, like mobile Java, for instance, introduce a relatively
simple application infrastructure that results in the eased construction of primitive
applications. However, there is a cost related to the simplicity, as applications are
often most naturally constructed so that while the model of the MVC pattern can
be separated, the view and the controller are most conveniently integrated to avoid
intimate interaction between two classes representing them. In contrast, in some
other systems, like Symbian OS, for instance, a strict application architecture is
imposed, where the main concepts remain the same, including all the components
of MVC. The downside of this approach is that it can be overkill for small sample
applications, making them seem overly complex. Furthermore, some systems that
do not bear characteristics that could easily be associated with the infrastructure can
become challenging to implement. For example, one can consider how a mobile Java
virtual machine should be implemented following the MVC pattern; the problem is
that the virtual machine simply does not play the role of an application but a piece
of the execution infrastructure.

To summarize, rather than addressing any individual leaking abstraction as such
in the application development, it seems that the different platforms reflect the
different origins and intentions, which leads to different characteristics. As a result,
they are suited for accomplishing different things. Moreover, the size of the step to
compose the first application in a certain environment can vary considerably. For
example, with mobile Java, as we will soon study, it is natural to start with only
a single class and start extending the application. Symbian OS, on the other hand,
shows signs of a system that has been targeted for more complex systems, where
an established design has been composed before advancing to coding.

3.4 Application Models in Mobile Java

The main elements of a mobile Java execution environment, which are the most
relevant for mobile Java, include the following elements:

1. Configuration defines the minimal requirements for the hardware of the device.
The configuration also defines what kind of virtual machine is included in the
system.

2. Profile defines the programming infrastructure available for applications intended
to be run on top of a certain configuration.
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3. Additional interfaces and infrastructure have been defined for accessing other
facilities of the device. For instance, many resources can be accessed via such
interfaces.

In the following, we discuss configurations and profiles separately. The most
important commonality the different systems have is that their lifetime is determined
by the infrastructure, not by the application models included in them, and therefore,
we will pay special attention to this detail. However, also different application
models are briefly introduced. At all levels, we focus on issues that help in dealing
with restricted resources. Additional interfaces and resources they provide access
to will be addressed later in Chapter 6. In general, many standard library interfaces
have been removed to reduce memory footprint, and in some cases they have been
replaced with simpler ones.

3.4.1 Configurations

As a configuration defines the minimal requirements for hardware, it can be taken
as the contract between a hardware vendor and the developer of Java infrastructure.
Therefore, it is the configuration that actually defines the type of virtual machine on
top of which the system is implemented. In the context of mobile devices, the most
important configurations are Connected Limited Device Configuration and Con-
nected Device Configuration, which also set requirements for the underlying virtual
machines. The relations between a hosting operating system, virtual machines, and
configurations is illustrated in Figure 3.3.

Connected Limited Device Configuration

The simplest configuration applicable in mobile Java is Connected Limited Device
Configuration (CLDC). It is intended to be run on top of a simplified virtual

Standard
Java VM

Connected
device

configuration
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Java VM
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device
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Hosting
operating system

Hosting
operating system

Figure 3.3 Mobile Java virtual machines and configurations
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machine. Several implementations exist, with different features. For instance, the
first CLDC-compatible virtual machine, Kilo Virtual Machine (KVM), includes
design decisions taken for reduced memory footprint and simplified execution.
For instance, stop-the-world garbage collection is used, and a design principle has
been that on-the-fly compilation will be used conservatively only in cases where
compilation can be hidden from the user, if at all. In contrast, CLDC Hotspot
Virtual Machine implements the same basic features, but includes facilities for
on-the-fly compilation, and thus allows improved application development. How-
ever, this is invisible to the programmer, because CLDC Hotspot Virtual Machine
principally implements the same routines as KVM. The only difference is that
the performance of some operations is improved when compiled code is bene-
fited from.

Many, if not all, current CLDC virtual machine designs only support the use of
one application per virtual machine. Therefore, in order to run several applications
in parallel, one should instantiate one virtual machine per application, which is
not a practical option from the memory consumption point of view. In fact, it is
possible that devices are restricted to run only one Java application at a time to
avoid loss of resources. However, design effort has been invested to implement
a mobile device enabled virtual machine that would be able to run several Java
applications in parallel. The design however requires some reconsideration of how
security features of MIDP Java should work (Chapter 8).

As already mentioned, CLDC introduces some simplifications when compared to
the normal Java environment to save memory, improve performance, and enable a
simplified security concept that requires less memory and performance. The most
important differences are the following:

• No support for floating point in CLDC v.1.0. The support was added in later
versions of the standard. However, as a number of devices have no support for
floating point operations, they often need to be implemented with software. This
in turn can be slow and result in surprising performance problems.

• Simplified security scheme. The motivation for this is that the standard Java
security scheme requires computationally complex executions. By simplifying
the scheme, these executions can be simplified, which results in improved per-
formance and reduced memory consumption. We will return to this topic in
Chapter 8.

• No support for finalize operation. In general, using the operation in a mobile
environment can be depreciated, because garbage collection can be implemented
in a fashion that stops the execution of the application. Instead, one should use
explicit deallocation that releases reserved resources.

• Thread groups or daemon threads are not supported.
• No user-defined class loaders are allowed. This is related to downsizing the

code size of the virtual machine referred to earlier and to the simplified security
scheme.
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• No support for Java Native Interface (JNI). Only predefined access to device
resources is offered, implying that all interfaces to the device are known at the
time of installation. This simplifies the implementation of the virtual machine
and security scheme. Moreover, memory footprint can be reduced.

• Weak references are only partially supported. No support is provided in the early
version of the standard (v.1.0). Later versions include partial support.

• No features associated with reflection are provided. This enables smaller imple-
mentation of the Java system, as the support needed for this feature is a major
source of memory consumption.

Many commercially available CLDC-based devices, low-end mobile phones in par-
ticular, can only offer a relatively small amount of memory for the Java environment,
with the size of the Java environment being around 200 kb and individual appli-
cations around 40–50 kb. However, some high-end devices have these restrictions
considerably relaxed.

Connected Device Configuration

In addition to CLDC targeted to low-end and middle-class mobile phones, mobile
Java also comprises another configuration, called Connected Device Configuration
(CDC). This configuration is based on the standard-featured Java virtual machine,
and it assumes all the features of the full Java virtual machine to be available in
the sense of the execution environment, but does not require all the libraries that
are commonly used in the desktop environment.

Practical implementations can be optimized for mobile devices, and therefore
they can be simplified in their implementation to conserve memory at the cost of
performance, for instance. Therefore, while the standard-featured virtual machines
in principle share the same structures, design decisions that define their perfor-
mance and memory footprint vary. Still, in the design of a CDC-enabled virtual
machine, the requirements for memory footprint and performance are increased
considerably, when comparing it to CLDC virtual machines. As a result, the virtual
machine can only be used in the most powerful mobile devices, such as PDAs and
communicators, even if optimization regarding memory footprint and performance
is carried out.

3.4.2 Profiles

While a configuration can be taken as a contract between hardware and Java envi-
ronment vendors, a profile is a contract between the Java environment developers
and application designers. Figure 3.4 depicts the main profiles of a mobile setting.
In the following, we introduce the main characteristics of these profiles from the
viewpoint of application models. For simplicity, we will however overlook details
such as available interfaces and libraries etc. that are associated with them.
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Figure 3.4 Mobile Java virtual machines, configurations, and profiles

Profiles Based on CLDC

Two standard profiles are defined for CLDC, referred to as Mobile Information
Device Profile (MIDP) and Information Module Profile (IMP), which are in fact
closely related. MIDP is a profile intended for devices that include a small screen,
simple keyboard, and at least limited connectivity, proprietary mobile phones being
the prime candidates for this profile. IMP, on the other hand, is derived from the
MIDP specification by omitting features related to the screen. The purpose of this
profile is to allow devices that can be operated from remote locations, including for
instance different sensors that can be distributed to some research area, but operated
remotely from a centralized facility. The main principles of MIDP Java have been
introduced in an environment where mobile devices were still closed in the sense
that only the device manufacturer could introduce additional features in its software.
This resulted in a restricted environment, which was somewhat isolated from the
functions of the phone. However, phones supporting MIDP Java have gradually
adopted more and more features, allowing a more liberal access to the resources of
the device.

Both MIDP and IMP define application models. MIDP applications are referred to
as midlets and IMP applications as implets. As the application models are somewhat
similar, we focus on the former in this representation.

Implementing a midlet is simple. One must derive the main class of the applica-
tion from class midlet. In addition, methods must be provided for constructing,
initializing (startApp), pausing (pauseApp), and destroying (destroyApp) the

TEAM LinG



78 Programming Mobile Devices

Paused

Active

DestroyedstartApp pauseApp

constructor

destroyApp

destroyApp

Figure 3.5 Midlet states

application. When a midlet is used, it makes transitions between these states. The
internal state machine of a midlet is illustrated in Figure 3.5.

A generated and packaged application file, a so-called midlet suite, which was
already addressed above, includes Java classes in an archived form, similarly to a
normal JAR file, as well as all the associated auxiliary files, such as graphics or
databases, that the application requires. Moreover, several midlets can be grouped
into the same suite, assuming that they are allowed to share resources, which is
not possible for midlets located in different suites. This is part of the security
framework, which we will return to in more detail in Chapter 8.

In addition to actual midlets and resource files, one should include a manifest
that defines details of the application. A MIDP manifest must contain, at the very
least, the following fields:

• MIDlet-Name; the name of the midlet suite.
• MIDlet-Version; version of the midlet suite.
• MIDlet-Vendor; vendor of the midlet suite.
• MIDlet-<n>; names, icons, and midlet classes of the suite in an increasing order.
• MicroEdition-Profile; the profile that this midlet suite requires for installa-

tion and execution.
• MicroEdition-Configuration; the configuration this midlet suite requires

for installation and execution.

Moreover, a number of additional manifest definitions can be introduced, giving
more detailed information about the application, its download, and related aspects.
For instance, the following definitions are available:

TEAM LinG



Applications 79

• MIDlet-icon; defines the icon used for the suite.
• MIDlet-Info-URL; a URL to additional information regarding the contents of

the suite.
• MIDlet-Jar-URL; a URL to the JAR file containing the suite.
• MIDlet-Jar-Size; provides the size of the suite file. This can be used for

determining whether or not it would be practical to download the application.

In addition to including the above information to the actual midlet suite, the same
information should be given in a separate file also. This file, referred to as the Java
Archive Descriptor (JAD), is helpful when deciding whether or not to download a
particular file to a certain device.

The workflow for compiling JAR packages containing MIDP applications is
somewhat different than in conventional Java or normal cross-compilation. To
begin with, security features (Chapter 8) are supported by the practice of including
additional information on any generated package. This additional information is
generated by the development workstation, a new step in Java application develop-
ment, and the goal is to ease the processing of an application when the application is
loaded. In addition, the manifest described above must be included in the package.

Profiles Based on CDC

Similarly to CLDC, CDC also defines a collection of profiles that different devices
can implement. Three profiles are commonly used, referred to as foundation profile,
personal basis profile, and personal profile. While they are building on top of the
standard-featured Java virtual machine, the facilities they offer for the application
developer vary. In the following, we shortly characterize them:

1. The simplest profile, referred to as Foundation profile, mainly introduces basic
classes of application development. However, no facilities associated with a
graphical user interface have been provided.

2. Personal basis profile extends Foundation profile by offering the Xlet applica-
tion model, which enables the development of simple applications. The states
associated with the application model are illustrated in Figure 3.6.

3. The most complex standard profile building on CDC is Personal profile. In
general, it resembles standard Java running in the workstation environment. It
includes, for instance, the Applet application model (Figure 3.7) and a restricted
version of Java bean technology. Moreover, it is possible to use the traditional
application model, where the application takes control of its own lifetime (Figure
3.8). This can be beneficial when implementing applications that must be in
execution constantly, such as those that for instance track the stock exchange
or some other resource. In practice, the option to use an application model
where all control is given to the developer results in application development not
unlike that of Java application development in more conventional environments.
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Figure 3.7 Applet states

Moreover, CDC on top of this profile offers an opportunity to use shutdown
hooks that can be used to execute code when the virtual machine is shutting
down.

As profiles based on CDC offer facilities that are fundamentally similar to stan-
dard Java, we will focus on the properties of CLDC-based profiles, in particular
MIDP, which is targeted at mobile devices.

3.4.3 Sample MIDP Java Application

In this subsection, we introduce a sample midlet that displays simple statements
and asks the user whether or not he agrees with them. Based on the answers, the
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Figure 3.8 Traditional application model

Figure 3.9 Sample Java application

system finally gives an evaluation of the personality of the user, as illustrated in
Figure 3.9. In the following, we introduce the listing of the application, together
with a discussion of its behavior.

To begin with, we import midlet and user interface libraries that will be used in
this application:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

Like all midlets, the midlet we are implementing is derived from class midlet.
In addition, the midlet implements the CommandListener interface for enabling
commands from the mobile device’s keyboard:

public class PersonalityTest
extends MIDlet
implements CommandListener {

Answers that the user can give to the system are received via Command objects
(yes, no, exit). In addition, a TextBox is defined, which will be used for displaying
the statements1 to the user. This is defined as follows:

1 Statements are from Leadership Through the Ages. A Collection of Famous Quotations published by Miramax
Books, 2003.
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private Command positive, negative, exitCommand;
/** Yes, No, Exit */

private TextBox tb;

/** Counter for statement and answer pair. */
private int nth, count = 0;

/** Questions */
private String Questions[] =

{ "The weapon of the brave is in his heart.",
"A man is a lion for his own cause.",
"Courage leads to the stars," +
"fear toward death.",
"Faced with crisis, the man of character " +
"falls back upon himself.",
"It is not the oath that makes us believe " +
"the man, but the man the oath.",
"Whoever is careless with the truth in " +
"small matters cannot be trusted with "+
"the important matters.",
"No great thing is created suddenly."

};

private int Qlen = Questions.length;

The constructor of the application creates three commands (exit from program,
and the responses to a question) for receiving input from the user:

public PersonalityTest() {
exitCommand = new Command("EXIT", Command.EXIT, 1);
negative = new Command("NO", Command.CANCEL, 2);
positive = new Command("YES", Command.OK, 2);

}

After the execution of the constructor, the midlet is in state idle. When the state
of the midlet is set to run, method startApp() is called. In this particular midlet,
the method picks a quotation that is shown to the user. In addition to startApp,
all midlets are required to implement methods destroyApp and pauseApp, which
are used to terminate and pause the execution of the midlet, respectively. These are
given as follows:

protected void startApp() { pickStatement(); }

protected void destroyApp(boolean u) {}

protected void pauseApp() {}
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The purpose of method pickStatement is to select one statement to be shown
on the screen. Here, the selection is based on variable nth, which defines that
questions are asked in sequence. This results in the following implementation:

private void pickStatement() {
if (nth == Qlen) { giveInfo(); }
else {

displayStatement(Questions[nth]);
nth = nth + 1;

}
}

Display operation simply creates a new TextBox, attaches commands to it, sets
this midlet as the listener of commands, and draws the TextBox to the screen. At
the level of code, the following code lines are needed:

private void displayStatement(String statement) {
tb = new TextBox(

"Statement Selection", // Title.
statement, // Text.
256, // MaxSize.
0); // Constraints.

tb.addCommand(positive);
tb.addCommand(negative);
tb.setCommandListener(this);

Display.getDisplay(this).setCurrent(tb);
}

As already discussed above, this particular midlet allows the user to make selec-
tions. This has been implemented in method commandAction, which has been
derived from interface CommandListener. In this case, the method records the
answer and selects the next statement to be shown to the user:

public void commandAction(Command c, Displayable d) {
if (c == exitCommand) {

destroyApp(false);
notifyDestroyed();

} else {
if (c == positive) { count++; }

else {count--;}
}
pickStatement();

}

Finally, method giveInfo introduces a simple conditional expression that acts
in accordance to the answers of the user (variable count):
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private void giveInfo() {
if (count > 1) {

tb = new TextBox(
"PersonalityTest",
"You seem to be an overly positive person.",
50,
0);

} else if (count < -1) {
tb = new TextBox(

"Personalitytest",
"You appear as a gravely negative person.",
50,
0);

} else {
tb = new TextBox(

"Personalitytest",
"You seem to have difficulties in being " +
"in line with yourself.",
80,
0);

}
tb.addCommand(exitCommand);
tb.setCommandListener(this);
Display.getDisplay(this).setCurrent(tb);

}
} // Closes class definition

In addition to the actual code, one must generate a Java Archive Descriptor (or
midlet manifest) for this application. This task is supported with multiple tools.
A file associated with this program is listed in Figure 3.10. With this auxiliary
information, it is possible to generate an installation package, again using associated
tool support.

3.5 Symbian OS Application Infrastructure

Symbian applications are commonly based on the MVC pattern enforced by the
underlying application infrastructure. In addition, there are some auxiliary classes

MIDlet-1: PersonalityTest, PersonalityTest.png, PersonalityTest
MIDlet-Jar-Size: 1931
MIDlet-Jar-URL: PersonalityTest.jar
MIDlet-Name: PersonalityTest
MIDlet-Vendor: Unknown
MIDlet-Version: 1.0
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-2.0

Figure 3.10 JAD file
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Figure 3.11 Sample Symbian application

for connecting the pattern concept to the rest of the system, so that they can be
initiated by the user.

In the following, we introduce a sample Symbian application, whose user interface
is given in Figure 3.11. On the left-hand side of the figure, the application asks a
question, in the middle, the user selects to answer the question, and on the right-
hand side the application provides an answer. For a detailed discussion of Symbian
OS application development, the reader is referred to e.g. Babin (2006).

3.5.1 Overview

When defining a Series 60 application,2 the designer is assumed to define the
following five different classes. Similarly to Java application models, life time of
the application is again controlled by the infrastructure.

1. Application class, derived from CAknApplication, defines the concept of an
application. The class also acts as the factory class for the application.

2. Document class of an application is defined from class CAknDocument. Instan-
tiated by the corresponding application class, the document class defines the
relation between the application’s model and controller. Moreover, it can be
used for storing the state of the application, when so desired.

3. UI class, derived from CAknAppUI, is used for defining the controller of the
application. The class is instantiated by the corresponding document class.
Another alternative is to use class CAknViewAppUI, which leads to a more
controlled use of the MVC pattern.

4. View class is derived from CCoeControl. The purpose of this class is to define
the view of the application. The view class is instantiated by the corresponding
UI class. When using CAknViewAppUI the corresponding view base class is
CAknView.

5. Engine class finally completes the MVC architecture by defining the model
of the application. Engines are not obligatory, and especially when developing

2 Series 60 applications include a platform-specific wrapping layer, denoted by Akn in class names. Plain Symbian
applications use Eik, and other UI systems are used in an analogous fashion.
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CBase CCoeAppUI CApaDocument CApaApplication
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CAknDocument CAknApplication
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Model View Controller Application concept
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Figure 3.12 Symbian application classes

simple UI-intensive applications, their role can be neglected. However, for more
complex cases, models can usually be reused in other types of Symbian devices,
using some other user interface library. Engine classes are typically derived from
CBase. Engines are usually instantiated by document classes, but also variations
are possible.

In addition, a factory function NewApplication is provided to initiate the newly
created application.

As an example, Figure 3.12 illustrates the structure of the sample application
building on these classes. We will introduce the associated implementation in the
following.

3.5.2 Resource File

In addition to actual code files, Symbian applications use a resource file that can
be used for defining the details of the user interface of the application. To begin
with, the resource file needs a name. Due to historical reasons, it can be four letters
long. In addition, the resource file usually includes some headers that define resource
structures and commonly used platform-dependent constants. In this particular case,
we also include an additional auxiliary file, qanda.hrh, which contains application-
specific constants to which we will return later. These items are listed as follows:

NAME qand

#include <eikon.rh>
#include <eikon.rsg>
#include <avkon.rh>
#include <avkon.rsg>

#include "qanda.hrh"
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After NAME and include files, the following unnamed resource is commonly given:

RESOURCE RSS_SIGNATURE { }

The purpose of this resource is to enable the specification of version information.
Another resource that is to be defined is the name of the default file for saving

the data associated with this application. As this application does not save its state
to a file, the resource is not defined:

RESOURCE TBUF r_default_document_name { buf=""; }

Furthermore, a set of resources is given to define the menu structure of this
application. This takes place at different levels of hierarchy. The following listing
is used in the sample application:

RESOURCE EIK_APP_INFO
{
menubar = r_qa_menubar;
cba = R_AVKON_SOFTKEYS_OPTIONS_EXIT;
}

RESOURCE MENU_BAR r_qa_menubar
{
titles =

{
MENU_TITLE {menu_pane = r_qa_menu;}
};

}

RESOURCE MENU_PANE r_qa_menu
{
items =

{
MENU_ITEM { command=EQAAsk; txt="Ask"; },
MENU_ITEM { command=EQAAnswer; txt="Answer"; },
MENU_ITEM { command=EQAQuit; txt="Quit"; }
};

}

In addition to the resources and other items included in this sample file, it is pos-
sible to introduce strings in the resource file. This eases localization of applications,
as the different language versions can be created more easily. For instance, when
defining a descriptor in a resource file, one would give a definition:

RESOURCE TBUF32 r_qa_about_message
{ buf = "QandA by tjm@cs.tut.fi"; }

Then, when the string is to be used in a program, the following code snippet can
be used:
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HBufC* textResource =
StringLoader::LoadLC(R_QA_ABOUT_MESSAGE);

This line would then assign the string to variable textResource. Notice LC in
method LoadLC, which the programmer must take into account in the management
of the cleanup stack.

Let us finally return to file qanda.hrh. A common way to link resource files
to actual binaries requires that a constant value is defined for the variables that are
used. In this application, there are four values that are used: EQAAsk, EQAAnswer,
EQAAbout, and EQAQuit. They have been defined as follows:

enum TQAMenuCommands
{
EQAAsk = 0x1000, // Own commands start from this value
EQAAnswer, // to avoid collisions with platform’s
EQAQuit // values.
};

Of the above, the different entries must be reconsidered for all applications.
Moreover, if strings are included in this file, their contents must be defined per
application. Therefore, it is not uncommon that the resource file gets relatively
large in practical applications, especially in cases where deep menu hierarchies are
used.

3.5.3 Attaching Application to Run-Time Infrastructure

In addition to defining the actual application classes, there are some other con-
cerns. Firstly, Symbian application abstraction reveals the fact that they are actually
dynamically loaded libraries (DLL, Chapter 4).3 Secondly, as the Symbian infras-
tructure must be able to initiate the application, a special factory procedure must
be given that initiates the application. In this particular case, the entry point and a
procedure that initiates the application are given in file qanda.cpp.

The purpose of the entry point is to allow performing of special actions when the
application is loaded but its execution is not yet started. For this application, there
are no actions to be taken, and therefore the operation simply returns immediately:

#include "qandaapplication.h"
// Defines the class name of the application that is created.

// DLL entry point, return indication that everything is ok.
GLDEF_C TInt E32Dll(TDllReason /*aReason*/)

{
return KErrNone;
}

3 This only holds for Symbian versions preceding Symbian v.9. which has redefined some parts of the application
infrastructure.
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Finally, a factory operation is provided that creates a new instance of CQAAppli-
cation, and is called by the Symbian infrastructure when this application is started.
This is given as follows:

// Create an application, and return a reference to it
EXPORT_C CApaApplication* NewApplication()

{
return (new CQAApplication);
}

Newer versions of Symbian OS no longer implement application interface this
way. Instead, plain E32Main()is used in the following fashion:

GLDEF_C TInt E32Main()
{
return EikStart::RunApplication( NewApplication );
}

The reasons behind the modification lie in the implementation of security features
that will be addressed in Chapter 8.

In summary, the characteristic property of the above code is the definition of
the startup routine for the application. In doing so, it reveals the underlying imple-
mentation technique of the application either as a dynamically linked library (older
Symbian versions) or an executable (newer Symbian versions).

3.5.4 Application

When developing Symbian applications in Series 60 environment, the base class
that defines the concept of an application is CAknApplication. In the following,
we give a listing for a sample application class.

Header

In the header part of the application class, only a few items are needed. These are
the definition of a method for querying the application’s unique identifier UID. Val-
ues for actual applications need to be obtained from an official source. However,
depending on the Symbian OS version, some ranges are available for develop-
ment and testing purposes. Prior to Symbian OS version 9.0 (S60 v. 3.0), range
0x01000000-0x0FFFFFFF is to be used, whereas after that range 0xE0000000-
0xEFFFFFFF is available for free use. In addition, we introduce a method for cre-
ating the document, which we will discuss in the following subsection. These are
introduced as follows in file qandaapplication.h:

#include <aknapp.h> // Details of application base class.
class CQAApplication : public CAknApplication

{
public: // from CApaApplication
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TUid AppDllUid() const;
protected: // from CEikApplication

CApaDocument* CreateDocumentL();
};

The included header file aknapp.h is needed for being able to use the concept
of application in Series 60 environment. Method AppDllUid is for querying the
identity of the application, and method CreateDocumentL is for instantiating the
document class associated with this application.

Implementation

In the following, the above header is implemented (file qandaapplication.cpp).
The different parts of the implementation have the following purposes.

First, header files are included for defining the concept of application and doc-
ument, which will be created by the application. In addition, a constant is defined
(KUidQAApp), which defines the UID of the application. This results in the following
definitions:

#include "qandadocument.h" // Document creation.
#include "qandaapplication.h" // Own header.

// Local constants.
static const TUid KUidQAApp = {0x01005b97};

Second, an implementation is provided for document creation. This operation
simply makes a method call to a constructor of the document class associated with
this application. The operation is defined as follows:

CApaDocument* CQAApplication::CreateDocumentL()
{
// Create QA document, and return a pointer to it
CApaDocument* document = CQADocument::NewL(*this);
return document;
}

Finally, an operation is provided for querying about the application-specific iden-
tifier of this particular application. This is a standard Symbian feature, which can
be implemented as follows:

TUid CQAApplication::AppDllUid() const
{
return KUidQAApp; // Return the UID
}

This completes the methods needed for class CQAApplication, and the intro-
duction of application-related facilities. In the following, we move on to the concept
of document that defines the content of applications.
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The main contribution of this class is the introduction of the application’s identity
on one hand, and the delegation of the application’s creation on the other hand. Of
these, the former is obviously unique, whereas the latter can be similar in many
applications.

3.5.5 Document

As already hinted, a document is an important concept in Symbian application archi-
tecture. Created by applications as discussed above, the purpose of documents is to
allow applications that follow the MVC model discussed earlier in this chapter. In
other words, while the application class is responsible for implementing the concept
of an application, documents are commonly used for maintaining the relationship
between user interface independent models (or engines, in accordance with Symbian
terminology) and user interfaces.

Header

First, we again include a number of header files. They are needed to be able to
use the concept of document as defined in the Symbian environment. In addition,
the document addresses the engine of this application and user interface. They will
be defined in files qandaappui.h and qaeng.h, respectively. This results in the
following code snippet:

#include <akndoc.h> // Document base class.
#include "qandaappui.h" // Controller that will be created.
#include "qaeng.h" // Model that will be created.

Whenever a document is introduced in Series 60 environment, the class from
which the document is derived is CAknDocument. The definition includes standard
methods for construction and destruction of documents, a method for creating a
user interface (CreateAppUiL), and a method that gives a reference to the current
engine of the application (Model), which also is the only instance variable we
introduce in the document. This results in the following definition:

class CQADocument : public CAknDocument
{

public:
static CQADocument* NewL(CEikApplication& aApp);
static CQADocument* NewLC(CEikApplication& aApp);
~CQADocument();
CEikAppUi* CreateAppUiL();
CQAEng* Model();

private:
void ConstructL();
CQADocument(CEikApplication& aApp);
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CQAEng * iModel;
};

In addition to the above operations, the document class can be used for auto-
matic loading and saving of application state (Externalize and Internalize).
In this application, however, we will omit such details of Symbian application
development.

Implementation

The implementation of the document class, given in file qandadocument.cpp,
begins by including the necessary header files, listed in the following:

#include "qandadocument.h" // Own header.

Next, we introduce the standard Symbian OS construction sequence, which in
this case consists of methods NewL, NewLC, ConstructL, and normal constructor.
Following the principles of two-phase construction, all code that might lead to an
exception is located in method ConstructL. In this particular application, such an
operation is the creation of the model, which is included in the listing. Furthermore,
a destructor is given that destroys the model. These are listed as follows:

CQADocument* CQADocument::NewL(CEikApplication& aApp)
{
CQADocument* self = NewLC(aApp);
CleanupStack::Pop(self);
return self;
}

CQADocument* CQADocument::NewLC(CEikApplication& aApp)
{
CQADocument* self = new (ELeave) CQADocument(aApp);
CleanupStack::PushL(self);
self->ConstructL();
return self;
}

void CQADocument::ConstructL()
{
iModel = CQAEng::NewL();
}

CQADocument::CQADocument(CEikApplication& aApp)
: CAknDocument(aApp)
{
// Add any construction that cannot leave here.
}
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CQADocument::~CQADocument()
{
if (iModel) delete iModel;
// Add any destruction code here.
}

In addition to construction and destruction, two more operations are introduced.
First, method CreateAppUiL constructs a user interface for this particular appli-
cation. This is given as follows:

CEikAppUi* CQADocument::CreateAppUiL()
{
// Create application user interface and return a
// pointer to it.
CEikAppUi* appUi = new (ELeave) CQAAppUi;
return appUi;
}

Second, an operation is provided for requesting the model that is stored inside
this document. This simply returns the associated instance variable, resulting in the
following implementation:

CQAEng * CQADocument::Model()
{
return iModel;
}

This completes the definition of the document, where the most common applica-
tion-specific features are related to the creation of the application. Next, we will set
the focus on defining the actual user interface of the application.

3.5.6 User Interface

The user interface of this application is implemented in class CQAAppView, which
is defined in files qandaappui.h and qandaappui.cpp. The contents of the
files implement the controller part of the MVC model. The files are listed in the
following.

Header

The most important aspects of the header file are the facts that the application UI
is derived from class CAknAppUi, and that we override command handler method
HandleCommandL, which gets the commands defined in file qanda.hrh. In addi-
tion, the controller knows the view and the model that are active (iAppView and
iModel). The contents of the file are the following:
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#include <aknappui.h> // Generic application UI.
#include "qaeng.h" // Model.

class CQAAppView; // Forward declaration for the view.
class CQAAppUi : public CAknAppUi

{
public:

void ConstructL();
CQAAppUi();
~CQAAppUi();

public: // from CEikAppUi
void HandleCommandL(TInt aCommand);

private:
CQAAppView* iAppView;
CQAEng* iModel;
};

Implementation

We use a number of additional header files in order to use the the items defined in
the resource file (compiled to qanda.rsg), as well as the different constants given
in different files. The actual headers we include in the application are the following:

#include <avkon.hrh> // Standard constants.
#include <qanda.rsg> // Stuff generated from resource file.
#include "qanda.hrh" // Application-specific UI constants.

#include "qandadocument.h" // Document that will be accessed.
#include "qandaappui.h" // Own header.
#include "qandaappview.h" // View that will be accessed.

The contents of the controller are simple. Again, the majority of the code lines
are used for defining the normal Symbian constructors and the destructor. They are
listed in the following:

void CQAAppUi::ConstructL() // Called by application framework
{
BaseConstructL();
iModel = static_cast<CQADocument*>(iDocument) -> Model();
iAppView = CQAAppView::NewL(ClientRect());
iAppView->SetModel(iModel);
AddToStackL(iAppView); // Series 60 practice; set the view

// active to receive key events.
// When using CAknViewAppUi, the
// corresponding method is AddViewL.
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}
CQAAppUi::CQAAppUi()

{
// add any construction that cannot leave here
}

CQAAppUi::~CQAAppUi()
{
if (iAppView)

{
RemoveFromStack(iAppView);
delete iAppView;
iAppView = NULL;
}

}

The actual contribution of this class to the application is defining operations for
the different commands that the user can give as input. In this application, all the
input must be selected from a menu, and all the different selections have separate
operations, identified by the values defined in file qanda.hrh and standard headers
(EAknSoftkeyExit). If an unknown command is selected, panic is raised, which
terminates the thread running the application. The method has been implemented
as follows:

void CQAAppUi::HandleCommandL(TInt aCommand)
{
switch(aCommand)

{
case EQAAsk:

iModel->Reset();
iAppView->DrawNow();
break;

case EQAAnswer:
iModel->Select();
iAppView->DrawNow();
break;

case EAknSoftkeyExit:
case EQAQuit:

Exit();
break;

default:
User::Panic (_L("QandA"), KErrNotSupported);
break;
}

}
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This completes the introduction of the controller, where the application specifics
are most visibly included in the interpretation on how to handle different user
interactions. For obvious reasons, this is something that requires explicit design
attention. Moreover, the design is related to the resource file, as they use the same
variables for communication between the definition of the menu hierarchy and actual
effects in code.

3.5.7 View

The view of this application directly corresponds to the view of the MVC model.
The class is responsible for drawing the selected question and the selected answer
to the screen when appropriate. Timing of drawing them to the screen is directly
associated with user activities, i.e., when the user selects a new question or an
answer, the screen is redrawn. Defining what to draw is fully handled by the engine,
which is only addressed by this class.

Header

Unlike other classes used in application development, views are not derived from
a related base class whose name would somehow link to view. Instead, views are
derived from so-called control elements, in this particular case from CCoeControl
base class. Operations are given for construction, destruction, setting the model
based on which drawing is performed, and the actual draw operation. The following
listing is given in file qandaappview.h:

#include <coecntrl.h> // Generic controls.
#include "qaeng.h" // Model.

class CQAAppView : public CCoeControl
{

public:
static CQAAppView* NewL(const TRect& aRect);
static CQAAppView* NewLC(const TRect& aRect);
~CQAAppView();
void SetModel(CQAEng * aModel);

public: // from CCoeControl
void Draw(const TRect& aRect) const;

private:
void ConstructL(const TRect& aRect);
CQAAppView();
CQAEng * iModel;
};

Next, we address the associated implementation.
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Implementation

The implementation of methods of class CQAAppView is given in file qandaapp-
view.cpp. The file includes the above header as well as some additional files for
using the items described in the resource file as well as to use the contents of
controls, listed in the following:

#include <coemain.h> // Control related.
#include <qanda.rsg> // Compiled resource file.
#include "qandaappview.h" // Own header.

Construction and destruction take place similarly to the common routine as
already discussed in several other classes, listed as follows:

CQAAppView* CQAAppView::NewL(const TRect& aRect)
{
CQAAppView* self = CQAAppView::NewLC(aRect);
CleanupStack::Pop(self);
return self;
}

CQAAppView* CQAAppView::NewLC(const TRect& aRect)
{
CQAAppView* self = new (ELeave) CQAAppView;
CleanupStack::PushL(self);
self->ConstructL(aRect);
return self;
}

void CQAAppView::ConstructL(const TRect& aRect)
{
// Create a window for this application view.
CreateWindowL();
SetRect(aRect); // Set the window size.
ActivateL(); // Activate the view.
}

CQAAppView::CQAAppView()
{
// Add any construction code that cannot leave here.
}

CQAAppView::~CQAAppView()
{
// Add any destruction code here.
}
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Setting the model simply sets the instance variable to the parameter of the method:

void CQAAppView::SetModel(CQAEng * aModel)
{
// Document owns the model, reference used here.
iModel = aModel;
}

Finally, method Draw is responsible for drawing the applications view to the
screen. Drawing is based on asking questions and answers from the model of the
application, available to the view by using instance variable iModel. The method
is listed in the following:

void CQAAppView::Draw(const TRect& /*aRect*/) const
{
// Get the standard graphics context.
CWindowGc& gc = SystemGc();

TRect rect = Rect(); // Gets the control’s extent.
gc.Clear( rect ); // Clears the screen.

gc.UseFont( iCoeEnv->NormalFont() );
gc.DrawText( iModel->Question(), TPoint(5,30) );

if ( iModel->Used() ) {
gc.DrawText( iModel->Answer(), TPoint(5,60) );

}
}

This completes the introduction of facilities needed for a graphical user interface.
For obvious reasons, the most important things to define in an application-specific
fashion are related to drawing to the screen. Finally, we can now define the model
that the above classes use when addressing data structures.

3.5.8 Engine

In this particular application, the engine is implemented in a class called CQAEng.
It manages all questions and answers that can be provided for them, and has been
given in files qaeng.h and qaeng.cpp.

Header

In the technical sense, questions and answers are both implemented as arrays of
descriptors, named iQuestions and iAnswers, respectively. These arrays are
initialized when constructing the engine. Operations are provided for construction
and destruction of the engine, for accessing both questions and answers, for selecting
a new answer, for checking if the current question–answer pair has already been

TEAM LinG



Applications 99

used, and for resetting the system. The above design results in the following header
file for the engine:

#include <e32std.h> // Standard Symbian stuff.
#include <e32base.h> // Standard Symbian stuff.
#include <badesca.h> // Array usage from badesca.h.

class CQAEng : public CBase
{

public:
static CQAEng* NewL(); // Two-phase constructor.
~CQAEng(); // Destructor.

const TPtrC Question(); // Reference to current question.
const TPtrC Answer(); // Reference to current answer.

void Select(); // Allows one to answer a question.
TBool Used(); // Identifies whether the answer is visible.
void Reset(); // Defines new question and answer.

protected:
void ConstructL(); // Constructors.
CQAEng();

private:

// All questions and answers implemented as arrays of
// descriptors. Also class RArray could be used.
CDesCArrayFlat * iQuestions, * iAnswers;

// Current question and answer are indices to the arrays.
TInt iQuestion, iAnswer;
TBool iUsed; // Identifies if the answer has been selected.

};

Notice the introduction of constructors as protected. The goal is to prevent their
accidental use instead of factory methods that implement two-phase construction.

Implementation

The above methods have been implemented as follows. First, standard and engine-
specific header files are included, and the standard two-phase constructor is intro-
duced. In addition, the numbers of questions and answers that will be used are
defined in this file:

#include <e32std.h> // Standard Symbian stuff.

#include "qaeng.h" // Own header.
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const TInt KQuestionCount = 4;
const TInt KAnswerCount = 5;

CQAEng * CQAEng::NewL()
{
CQAEng* self = new (ELeave) CQAEng;
CleanupStack::PushL(self);
self->ConstructL();
CleanupStack::Pop();
return self;
}

The methods called by NewL are responsible for resetting the values of instance
variables to initial values (normal constructor), and for initializing the arrays of
questions and answers (ConstructL) based on the given strings. The partitioning
of operations in the two different constructors is directly based on whether or
not they potentially throw an exception, following the normal Symbian two-phase
construction scheme. This results in the following code:4

CQAEng::CQAEng() // Resets instance variables.
{
iQuestion = 0; // strictly speaking not necessary, because
iAnswer = 0; // 0 is the default value.
iUsed = EFalse;
}

void CQAEng::ConstructL() // Creates questions and answers.
{
iQuestions = new (ELeave) CDesCArrayFlat( KQuestionCount );
iQuestions->AppendL( _L( "Can I stay up?" ) );
iQuestions->AppendL( _L( "Let’s watch TV?" ) );
iQuestions->AppendL( _L( "Eat doughnuts?" ) );
iQuestions->AppendL( _L( "Let’s go swimming?" ) );

iAnswers = new (ELeave) CDesCArrayFlat( KAnswerCount );
iAnswers->AppendL( _L("Not me.") );
iAnswers->AppendL( _L("Not my problem") );
iAnswers->AppendL( _L("Ask my brother.") );
iAnswers->AppendL( _L("Obviously.") );
iAnswers->AppendL( _L("Not interested.") );

Reset(); // Pick the first question and answer.
}

4 Individual questions and answers are based on numerous conversations with the author’s children.
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Obviously, the mechanism of using resource files for defining strings would be an
improvement over this approach. However, for simplicity, we continue with this
implementation in the example.

When the application terminates, memory reserved for questions and answers is
released, provided that the allocation has taken place in the first place. This has
been handled in the destructor as follows:

CQAEng::~CQAEng()
{
if (iQuestions) delete iQuestions;
if (iAnswers) delete iAnswers;
}

A number of routines are offered for the user interface. First, the user interface
can get the current question and answer from the engine (methods Question and
Answer). Second, the user interface can select an answer from the menu, in which
case the engine is notified (Select). Finally, the user interface can query whether
or not the current question has been answered (Used). All these methods have
straightforward implementations listed in the following:

const TPtrC CQAEng::Question()
{
return (* iQuestions)[iQuestion];
}

const TPtrC CQAEng::Answer()
{
return (* iAnswers)[iAnswer];
}

void CQAEng::Select()
{
iUsed = ETrue;
}

TBool CQAEng::Used()
{
return iUsed;
}

Finally, Reset selects the question and the answer from the arrays in an exhaus-
tive fashion, and resets the question–answer pair so that only the question will be
drawn to the screen when the screen is redrawn the next time:

void CQAEng::Reset()
{
iQuestion = (++iQuestion) % KQuestionCount;
iAnswer = (++iAnswer) % KAnswerCount;

iUsed = EFalse;
}
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; qanda-simple.pkg
;

;Language; standard language definitions
&EN

; standard SIS file header; application name and id.
#{"qanda-simple"},(0x01005b97),1,0,0

;Supports Series 60 v 0.9
(0x101F6F88), 0, 0, 0, {"Series60ProductID"}

; Files to copy; Application and compiled resource file.
"..\..\..\epoc32\release\armi\urel\qanda-simple.APP"
-"C:\system\apps\qanda-simple\qanda-simple.app"
"..\..\..\epoc32\release\armi\urel\qanda-simple.rsc"
-"C:\system\apps\qanda-simple\qanda-simple.rsc"

Figure 3.13 Information needed for generating an installation package

This method completes the implementation of the engine. As expected, the engine
contains mostly application-specific code, and it must often be composed from
scratch for new applications.

3.5.9 Generating Installation Package

Finally, an installation package must be generated. In the Symbian environment,
such packages are referred to as SIS (or SISX in newer systems) packages, and
they consist of defining where cross-compiled code resides in the development
workstation, and where it is to be installed in the device. In addition, it is possible
to include auxiliary files. For instance, in this application, it would make sense to
create auxiliary files for questions and answers, and to copy them to a convenient
location in the device.

A sample data needed for generating the SIS package for this application is listed
in Figure 3.13. After the generation of the package, the size of the application’s
installation file totals 4 kb. In addition to the minimal contents included in the figure,
it is possible to also include additional information, such as installation notes or
information on the vendor, in the file. Moreover, in order to support backing up
the data of the application, additional information must be provided to register the
application’s data for backup routines.

3.6 Summary

• The application concept is about connecting new functionality to an already
existing platform. The concept defines how applications are integrated with the
facilities of the device. This enables the introduction of user-installed applications.
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• Application priority is a combination of its execution priority and its importance
of being kept in execution.

• Five principal topics form a guideline for application development:

1. well-defined scope of an application,
2. performance,
3. proper UI design,
4. internal representation,
5. communications model.

• Mobile application development often requires an iterative approach for the best
UI design and adequate performance.

• Properties of application architectures reflect the assumption on the complexity
of assumed applications; the model-view-controller (MVC) pattern is usually
applicable as the basis of applications in any environment. It is common that views
and controllers are device specific, but that models can be reused in different
environments.

• Applications can be packed to different platform-specific installation packages,
which have different formats.

• Application infrastructure complexity varies considerably. For example, mobile
Java only requires the definition of a single class, whereas Symbian application
architecture is based on an elaborated framework on top of which applications are
defined. Still, in many cases the parts that the application developer can define
are similar, and the differences are only in how and in which places the developer
is to inject the actual application code.

3.7 Exercises

1. What would be the main use cases of a multi-user calendar application? What
kinds of performance requirements would they imply? Which features form the
bottleneck that should be considered when estimating the performance of the
application?

2. In what kinds of cases would it be beneficial for applications to share data?
How about program code? What kinds of applications should be activated due
to environment activity?

3. What would be the minimum application support one must include in a mobile
platform? How would that correspond to MIDP Java and Symbian OS applica-
tions?

4. Compare application development in MIDP Java and the Symbian OS environ-
ment. What kinds of benefits or problems can you find in them?

5. Modify the given sample midlet so that it asks questions in a random rather than
in a fixed fashion. Compile it, and install the application to different types of
devices (or emulators). Can you find differences in the usability of the application
due to the facilities offered by the device?
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6. What benefits or problems would occur when implementing a Java environment
where both CLDC- and CDC-based profiles could be used? For which kinds of
devices would this be an option?

7. What kinds of operations could be offered for managing downloadable applica-
tions in mobile devices?

8. In addition to models, which parts of applications could be reused in a different
application or device? Why? How would this be visible in designs?

9. Assume a system where applications can be automatically shut down when no
execution time is allocated to them within some period. When the application
is shut down, it saves its data to the disk, and when the user returns to this
application, the saved data is automatically loaded. How does this relate to the
use of virtual memory, where an application image is effectively saved to the
disk, when no execution time is given to it?
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4
Dynamic Linking

4.1 Overview

Dynamic linking, often implemented with dynamically linked libraries (DLL), is a
common way to partition applications and subsystems into smaller portions, which
can be compiled, tested, reused, managed, deployed, and installed separately. For
instance, assuming that a design of an application follows the MVC pattern dis-
cussed in Chapter 3, it is sometimes convenient to implement the model as a separate
library that can be loaded when necessary. Then, the library can be reused in some
other graphical user interface that needs the same functions, for instance, or by
applications that integrate the model to a larger context. Furthermore, the use of
dynamically linked libraries can also be a way to interact with a given framework,
thus allowing a well-defined boundary between two units of software. In partic-
ular, extensions and adaptations to an already existing system can often be more
elegantly handled using dynamic libraries than with source code, because recompi-
lations of already compiled parts can be avoided and the correct configuration can
predominantly be created with binary files.

4.1.1 Motivation

In the sense of program implementation only, it is not usually necessary to divide the
program into several libraries or components. However, using dynamically loaded
libraries as an implementation technique for allowing several applications to use the
same functions has several benefits. In the following, the most important conceptual
advantages are listed:

• Several applications can use the library in such a fashion that only one copy of
the library is needed, thus saving memory.

• Application-specific tailoring can be handled in a convenient fashion, provided
that supporting facilities exist.

• Smaller compilations and deliveries are enabled.

Programming Mobile Devices: An Introduction for Practitioners Tommi Mikkonen
 2007 John Wiley & Sons, Ltd
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• Composition of systems becomes more flexible, because only a subset of all
possible software can be included in a device when creating a device for a certain
segment.

• It is easier to focus testing to some interface and features that can be accessed
using that interface.

• Library structure eases scoping of system components and enables the creation
of an explicit unit for management.

• Work allocation can be done in terms of dynamic libraries, if the implementation
is carried out using a technique that does not support convenient mechanisms for
modularity.

There can also be other motivations. For instance, a dynamically linked library
may be used as a means to manage interface coherence if no other facilities are
provided by the implementation infrastructure. Then, applications can be forced to
follow a certain interface that has been externally defined, making the interface a
separate entity for maintenance and future software evolution. This eases publishing
the interface as the underlying implementation can be changed, following the basic
principles of encapsulation.

4.1.2 Release Definition Using Dynamically Linked Libraries

Assuming that a system consists of a number of libraries rather than a single appli-
cation file, a question arises on what constitutes a complete system that must be
compiled, installed, and executed. In other words, where does one define what files
and auxiliaries are needed for performing compilation and installation for a com-
plete system? We will refer to this task as release definition. In general, release
definition is among the first tasks that are to be performed in a development project
where several components are needed. Then, the developers know what to aim at,
and how the final system is constituted. In contrast, without a release definition,
there can be serious ambiguities on what to develop in the first place.

In the simplest form, release definition can consist of a collection of file names in
a particular file from which the compilation environment reads them and performs
a compilation, like a make file, for instance. However, the more complex the devel-
opment process and the system to be developed are, the more sophisticated support
must be offered. For instance, release definition can be connected to the version
control system, and whenever a new version of a component is submitted the system
is compiled, resulting in continuous integration of newly completed components.

For obvious reasons, there can be several levels of release definitions. For instance,
a project aiming at the development of a mobile device produces a release definition
suited for the device, platform developers have a release definition for a particular
platform version, and application developers have a release definition for their appli-
cation. Furthermore, different increments can be defined using release definitions
as well, resulting in a number of (internal) release definitions for one project.
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A release definition can overlook some parts of the runnable system. Then, miss-
ing pieces are assumed to be provided by the platform or by other systems built
on top of the release. However, recording this assumption, together with associated
version information, can sometimes clarify the development.

4.1.3 Required Implementation Facilities

The software infrastructure needed for implementing dynamically linked libraries is
relatively simple. The system provides facilities for dynamic loading and unloading
of libraries. Loading the library typically means that it is instantiated in the memory
that is accessible by the process that wishes to run the code in the library. However,
as program code should not be modified, it is sometimes possible to use shared
memory, allowing all processes using the same dynamic library to rely on a common
copy, which in some sense provides similar benefits than in-place execution, as
superfluous copying can be avoided in both approaches. Obviously, the library
should only be unloaded, i.e., removed from the memory, when all the processes
using it agree on the removal.

At a more detailed level, instantiating library code to memory in a mobile setting
is usually implemented in full, so that both code and variables are instantiated in
RAM memory, even if in-place execution, where code is executed directly from
ROM, would sometimes be possible as well. Therefore, it is possible to update files
by downloading new versions to a location from which dynamically linked libraries
will be searched before attempting to load them from ROM. For some particular
situations, this can however lead to hard-to-trace errors, if the old and new libraries
are not fully compatible in some respect. For instance an application that has worked
perfectly with the old version can reveal a number of bugs with the new version
due to e.g. some new branches of code that will be executed due to upgrades in the
library. In principle, version information could be used as a mechanism to lessen
such problems, but in practice many of the problems are unintentional and created
even if the developers are expecting that compatibility is not violated.

Obviously, in order to use dynamic libraries in a reasonable fashion, it is advan-
tageous if all code is not needed simultaneously. If that is the case, the benefits of
dynamically linked libraries are degraded, because the amount of memory that is
needed must be enough for running the whole system in any case. Still, the fact that
only one copy of the library is needed, not one per application using it, is an advan-
tage when considering storage space, as already discussed above. In addition, eased
development and testing, and fixed partitioning of the system may provide enough
reasons for using dynamic libraries. Furthermore, also issues like subcontracting
may be considered.

4.1.4 Static versus Dynamic DLLs

While dynamically linked libraries are all dynamic in their nature, there are two dif-
ferent implementation schemes. One is static linking, which most commonly means
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that the library is instantiated at the starting time of a program, and the loaded
library resides in the memory as long as the program that loaded the library into
its memory space is being executed. The benefit is that one can use the same static
library in several applications. For instance, when relying on MVC as the archi-
tecture of an application, one can imagine a model implemented as a dynamically
linked library that can be used by several applications.

In contrast to static DLLs, dynamic DLLs, which are often also referred to as
plugins, especially if they introduce some special extension, can be loaded and
unloaded whenever needed, and the facilities can thus be altered during an execu-
tion. The benefit of the approach is that one can introduce new features using such
libraries. For instance, in the mobile setting one can consider that sending a message
is an operation that is similar to different message types (e.g. SMS, MMS, email),
but different implementations are needed for communicating with the network in
the correct fashion.

4.1.5 Challenges with Using DLLs

While the abstraction of DLL is commonly used, it has plenty of leaking capabilities.
Some of them are related to the way in which dynamic libraries are installed, but
some others are related to the way they refer to each other. We will address this
topic in the following.

A common risk associated with dynamic libraries is the fragmentation of the total
system into small entities that refer to each other seemingly uncontrollably. When
more and more dynamic libraries are added to the system, their versioning can result
in cases where some applications work with a certain version of a library, whereas
others require an update or a previous or newer version. Furthermore, managing all
the dependencies between libraries is another source of difficulties, as a collection
of compatible components is often needed. In fact, one can create a system where
one dynamically linked library loads another that in turn loads further libraries.
Managing all these dependencies in application development can be difficult, as the
loading time of dynamically linked libraries can seem random due to loading of
further libraries.

In addition to dependency management, also other problems result from recursive
loading of libraries, since this can result in delays in the execution of the application.
The situation is worsened by the fact that in many cases library code is not optimized
for the needs of a certain application, but their initialization code can contain parts
that are needed by only some of the applications using them. However, for an
application programmer it is not in general an option to modify such library code,
as it may be delivered in binary format only. Moreover, altering the library for the
needs of one application only can be considered impractical, as also other clients
of the library should be adapted to the change. This can reveal the implementation
techniques of library linking and loading to the user, as well as the amount of
loaded libraries.
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Another problem is that if a dynamic library is used by only one application,
memory consumption increases due to the infrastructure needed for management of
the library. In addition, performance overhead can be associated with selecting and
loading the right library, which is harmful for obvious reasons. When unloading a
static DLL, this seldom is a problem, as the application is often terminated in any
case. However, with dynamically loaded DLLs, also this can be considered harmful,
since the removal must usually be completed before loading the next library that
will then adopt the same role.

In addition to the technical challenges, market requirements lead to the evolution
of device types in terms of new features. Often requiring software implementation
in mobile devices, such new features can lead to incompatibilities between different
versions of the devices, although they in principle are building on the same platform.
In order to ensure some measure for compatibility, API releases, where a set of
interfaces is promised to remain unaltered for some period of time, can be used for
ensuring the continuity of the platform. When changed for another interface, the
interface may be declared deprecated for a period of time before its actual removal.
This allows time for application programmers to change their implementations that
rely on the interface between the two releases.

4.2 Implementation Techniques

Fundamentally, dynamically linked libraries can be considered as components that
offer a well-defined interface for other pieces of software to access it (Figure 4.1).
As illustrated in the figure, additional information may be provided to ease their
use. This is not a necessity, however, but they can be self-contained as well, in
which case the parts of the program that use libraries must find the corresponding
information from libraries. Usually, this is implemented with standard facilities and
an application programmer has few opportunities to optimize the system.

DLL

External
interface

Operation

Operation

Operation

Linking
information

Figure 4.1 Dynamically linked library
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Dynamically linked libraries can be implemented in two different fashions. The
first way to implement such a system is to create a data structure similar to the
virtual function table introduced in Chapter 1, using externally visible operations as
the basis for table creation, and use this facility for figuring out the correct memory
location to call. In contrast, a more complicated approach can be used, where method
signatures are used as basis for linking, where linking is based on language-level
facilities, such as class definitions and method signatures for instance.

OffSet-Based Linking. Linking based on offsets is probably the most common way
to load dynamic libraries. The core of the approach is to add a table of function
pointers to the library file, which identifies where the different methods or proce-
dures exported from the dynamically linked library are located, thus resembling the
virtual function table used in inheritance. Then, when the library is used, the com-
pilation can be performed against the exported functions using offsets as identifiers
in generated code. The benefits of the approach are obvious. As calling of exported
functions is performed directly through a function pointer, the result is suitable with
respect to performance. However, there are several shortcomings. Firstly, the com-
piler can only perform restricted optimization, as for instance inlining can cause
problems for linking; how to create an entry point to the inlined function? Similarly,
additions to the library can invalidate some of the applications using it, because the
table used for linking when using the library and the table inside the library may
become different due to failed compilations, or forgotten updates or registrations.
The situation is illustrated in Figure 4.2.

Signature-Based Linking. In contrast to offset-based linking of dynamically linked
libraries, also language-level constructs, such as class names and method signatures,

DLLAPP

LIB Ordinal

Code

Code

Code

DLLAPP

LIB

Ordinal

Original configuration Updated DLL

New

New
Code

Code

Code

Code

Figure 4.2 Error in offset-based linking
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can be used as the basis for linking. Then, the linking is based on loading the
whole library to the memory and then performing the linking against the actual
signatures of the functions, which must then be present in one form or another.
This results in a more fail-safe but more elaborate design, where dynamic linking
may become a bottleneck when starting (or running) applications if a long chain
of libraries is loaded. Moreover, memory consumption is increased considerably,
because all libraries must include additional information regarding the signatures
of methods they offer to their clients. Similarly, all method calls made by some
other code using the services of the dynamic library must include usable informa-
tion regarding the signature as well, further contributing to the increased memory
footprint.

Based on the above, in addition to the way in which dynamically linked libraries
are used, also their implementation facilities are capable of leaking. However,
depending on the implementation scheme, the users of the libraries will experience
leaking in a different fashion.

4.3 Implementing Plugins

Plugins, which dynamically loaded dynamically linked libraries are often referred
to as, especially if they play a role of an extension or specialization, are a special
type of DLL that enable differentiation of operations for different purposes at run-
time. They usually implement a common interface used by an application, but their
operations can still differ at the level of implementation. As already mentioned, one
could implement different plugins for different types of messages that can be sent
from a mobile device, for example.

4.3.1 Plugin Principles

Plugins take advantage of the binary compatibility of the interface provided by a
dynamically linked library, as illustrated in Figure 4.3. The important concepts of a
plugin are the interfaces they implement, and the implementations they provide for
interfaces. The interface part is used by applications using the plugin for finding
the right plugins, and the implementation defines the actual operations. Commonly
some special information regarding the interface is provided, based on which the
right plugin library can be selected.

When a plugin is selected for use, its implementation part is instantiated in the
memory similarly to normal dynamically linked libraries. Obviously, it is possible
to load and unload several plugins for the same interface during the execution of
an application, depending on required operations.

While no special support apart from common DLL loading and unloading is an
absolute necessity for plugins, software infrastructure can offer special support for
them, which eases the use of the feature. For instance, there can be operations
for identifying interfaces based on interface identifier. Similarly, there can be an
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Figure 4.4 Abstract factory

identifier for implementations as well, potentially helping in the selection of the
right implementation for some interface.

One applicable solution for the implementation of plugins is the abstract factory
design pattern introduced by Gamma et al. (1995). The pattern is illustrated in
Figure 4.4, in which prefixes Abs and Conc refer to abstract and concrete elements
of the design, respectively. In the pattern, an interface is defined that is accessible
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to an application. However, no implementation is provided for the interface, but
the application must instantiate one using a special factory operation similarly to
Symbian OS’s NewL and NewLC methods discussed earlier. The operation allows
parameters that guide in the selection of the convenient implementation, thus offer-
ing more options for the application to select a well-suited plugin. Several types
of approaches are available, where the programmer has different responsibilities. In
some cases, the programmer is responsible for all the operations, in which case all
the plugins are just plain dynamically linked libraries from which the programmer
selects one. In other cases, sophisticated support for plugins is implemented, where
the infrastructure handles plugin selection based on some heuristics, for instance.
However, the applicability of this approach is restricted, as finding general-purpose
heuristics is hard, if not impossible.

The idea of plugins can be applied in a recursive fashion. This means that a
plugin used for specializing some functions of the system can use other plugins in
its implementation to allow improved flexibility. For instance, a messaging plugin
discussed above can use communications plugins to transmit the message over
GPRS or Bluetooth in a fashion that is invisible to the application using the facility.
One should however note that while the earlier problems on creating a recursive
sequence of dynamically linked libraries can be difficult to manage when using
regular DLLs, similar use of plugins can be considered even more complex due to
the more dynamic relation between the libraries. Therefore, even more care should
be given to ensure the creation of a manageable configuration.

4.3.2 Implementation-Level Concerns

While plugins in principle are a simple technique, there are several implementation
details that must be considered before applying the approach. In the following, we
elaborate some practicalities of using them in applications.

To begin with, a framework is commonly used for loading and unloading plugins.
This implies a mechanism for extending (or degenerating) an application on the fly
when some new services are needed.

Secondly, in order to enable loading, facilities must be offered for searching all the
available implementations of a certain interface. This selection process is commonly
referred to as resolution. In many implementations, a default implementation is
provided if no other libraries are present, especially when a system plugin that can
be overridden is used.

Finally, a policy for registering components and removing them is needed in
order to enable dynamic introduction of features. This can be based on the use of
registry files, or simply on copying certain files to certain locations, for instance.

One should also note that using the library that has already been loaded is not
always intuitive. As an example, let us again consider the case where different
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message types and associated messaging features have been implemented using
plugins. When composing a message, the user is then prompted to determine the
type of the message she is planning to send, which is, say MMS in this example.
The device loads the right plugin, and allows the user to compose the message,
which is then sent using the plugin. When the message is received, the receiving
device must recognize that the incoming message requires an MMS plugin, which
is then loaded, and used for displaying the message. The confusing part is what
happens if the user decides to reply to the MMS. As the MMS plugin is already
loaded, the user may not be prompted about the message type but the present plugin
is used automatically, which is the fastest and probably the most convenient way.
As a result, it may be impossible to respond to an MMS using an SMS even if it
would make more sense to send a textual response only.

4.4 Managing Memory Consumption Related to Dynamically
Linked Libraries

As already discussed in Chapter 2, memory consumption forms a major concern in
the design of software for mobile devices. At the same time, a dynamically linked
library is often the smallest unit of software that can be realistically managed when
developing software for mobile devices. Therefore, in this section we introduce
some patterns introduced by Noble and Weir (2001) for managing memory con-
sumption at DLL level. One particular detail that should be considered is that when
managing memory consumption, some of the available memory will necessarily be
allocated for implementing management routines.

4.4.1 Memory Limit

Setting explicit limits regarding memory usage for all parts of the system is one
way to manifest the importance of controlling memory usage. Therefore, make all
dynamically linked libraries (and other development-time entities) as well as their
developers responsible for the memory they allocate. This can be achieved, for
instance, by monitoring all memory reservations made by a library or a program.
This can be achieved, for example, using the following routine, where MyLimit
is the maximum amount of memory the library (or subsystem) can allocate and
myMemory refers to the amount of allocated memory.

void * myMalloc(size_t size)
{
#ifdef MEMORY_LIMITATION_ACTIVE

if (myMemory + size > myLimit) return 0;
else { // Limit not reached.

void * tmp = malloc(size);
// Update myMemory if allocation succeeded.
if (tmp) myMemory = myMemory + size;
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return tmp;
}

#else
return malloc(size);

#endif
}

While the above procedure only monitors memory space used for variables, the
same approach is applicable to programs’ memory consumption as well. Then, the
role of the approach is to place developers’ focus on memory consumption during
the design. Furthermore, designing memory usage in advance creates an option to
invest memory to some parts of a system for increased flexibility, and to optimize
for small memory footprint on parts that are not to be altered.

In order to be able to give realistic estimates for future releases when setting
memory limits for them, one should maintain a database of memory consumption
of previous releases to monitor the evolution of the consumption. Moreover, more
precise estimates of the final results can be obtained by also including estimates
made at different phases of the development project into the database, which can
be used for evaluating the effect of errors in estimates made in the planning and
design phases.

4.4.2 Interface Design Principles

As with many designs, there is no single fundamental principle that would always
overrule in the design of interfaces. Instead, one can advocate a number of rules of
thumb that are to be considered. In the following, we will address such issues.

Select the right operation granularity. In many cases, it is possible to reveal
very primitive operations, out of which the clients of a dynamically linked library
can then compose more complex operations. In contrast, one can also provide
relatively few operations, each of which is responsible for a more complex set
of executions. A common rule of thumb is to select the granularity of the visible
interface operations so that they are logical operations that a client can ask the
library to perform, and not to allow setting and getting of individual values (overly
simplistic operations) or simply commanding the library to doIt() (overly abstract
operations), for instance.

Allow client to control transmissions. This allows implementations where clients
optimize their memory and general resource situation in their behaviors, whereas if
the service provider is in control, all the clients get the same treatment, leaving no
room for special situations on the client side.

Minimize the amount of data to be transmitted. For individual functions that call
each other this means that the size of the stack remains smaller. Furthermore, there
will be less need for copying the objects that are passed from one procedure to
another. For cases where process interface restricts communication, minimizing the
amount of data will lead to a design where less data is passed between processes.
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Figure 4.5 Ways to transmit data from a service provider to a client

This in turn will mean less message passing. Even if processes communicate via
shared memory, minimizing the amount of data that is passed usually leads to
improved performance and helps to control memory consumption. Finally, when
data is transmitted over the network, minimizing data transmissions usually result
in increased performance.

Select the best way to transmit the data. There are three fundamentally different
ways to transmit data, referred to as lending, borrowing, and stealing (Figure 4.5).
They are described in the following in detail.

1. Lending. When a client needs a service, it provides some resources (e.g. memory)
for the service provider to use. The responsibility for the resource remains in
the client’s hands.

2. Borrowing. When a client needs a service, it expects the service provider to
borrow some of its own resources for the client’s purposes. The client assumes
the responsibility for the deallocation, but uses the service provider’s operation
for this.

3. Stealing. The service provider allocates some resources whose control is trans-
ferred to the client. The owner of the resource is changed, and the client assumes
full ownership, including the responsibility for the deallocation.

When making the decision, there are several viewpoints to consider. For instance,
it may be relevant whether it is the client or the service provider that takes the
initiative. For instance, in some cases the service provider may already have an
existing copy of the data item that only one client is accessing, and it may be
easiest to simply pass the copy to the client and forget about it, assuming that no
other client needs the data. Similarly, when a number of clients will be accessing
the same data, different decisions may be taken.
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4.4.3 Merging Elements

In general, merging elements as a trick to save memory is obviously deprecated.
However, in cases where different relevant design choices are available, as well as
in cases where extreme measures are needed, one may need to consider even such
actions. However, they probably should be used as the last resort only, when no
other action saves the program, as usually it is easier to find better data structures
by other means.

Merging packages and dynamically linked libraries. By merging packages and
dynamically linked libraries, some packaging infrastructure can be saved. Then,
when the contents of the packages refer to each other, no package specification is
needed. The downside is that loading will be performed on a coarser scale. The
same applies to necessary management functions.

Flattening structural hierarchies. Hierarchies associated with generated structures,
such as packages and inheritance hierarchies, consume memory that can be saved
to some extent. With packages of MIDP Java, for instance, it is possible to reduce
the number of identifiers that are needed for dynamic linking. With inheritance,
flattening hierarchies directly reduces the number of virtual function tables needed
for representing the run-time configuration. Moreover, functions that are not over-
ridden will be visible in several virtual function tables, which further encourages
reducing their number.

Embedding objects. By embedding small objects (or individual data fields such as
pointers) into bigger objects, less overhead is associated with objects, as an object
tag is always needed per object, as illustrated in Figure 4.6. Additional, and often
more important, benefits can be gained due to the simplified allocation strategy. For
instance, assuming that a list is implemented in a fashion where all the nodes are
objects that bear a reference to the next node and to the actual data item, a revised
implementation where data is included in the node results in improved memory
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Figure 4.6 Embedding pointers
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allocation. Furthermore, as the node then becomes a bigger entity, there are also
benefits regarding cache usage.

4.5 Rules of Thumb for Using Dynamically Loaded Libraries

In principle, any unit of software can be implemented as a separate library. In
practice, however, creating a complex collection of libraries that depend on each
other in an ad-hoc fashion is an error that is to be avoided at all cost. In the
following, we list some candidate justifications for creating a separate dynamically
linked library out of a program component.

• Reusable or shareable components should be implemented using dynamically
loaded libraries, as otherwise all the applications that use the components must
contain them separately. This in turn consumes memory. In addition, sharing
can take place in a form where the same model, implemented as a dynamically
loaded library, is reused in several different devices that require a specialized
user interface for each device.

• Variation or management point can be preferable to implement in terms of
dynamic libraries. This makes variation or management more controlled, as it
can be directly associated with a software component. Moreover, the library can
be easily changed, if updates or modifications are needed. For instance, inter-
faces can be treated in this fashion even if the underlying infrastructure (e.g.
C++) would not offer such an option. Management can also be associated with
scoping in general, allowing that a certain module can be evolved separately.

• Software development processes such as automated testing may require that all
the input is in a form that can be directly processed. Then, performing the tests
may require that binary components are delivered.

• Organizational unit can be authorized to compose a single library that is respon-
sible for a certain set of functions. Requesting a library then results in a separate
deliverable that can be directly integrated into the final system.

The above list is by no means exhaustive, and new rationale for using dynamically
loaded libraries can be found when considering case-dependent rationale. However,
similar justification should be provided for any decision to use a separate library,
and such should never be made due to a single decision by a programmer.

4.6 Mobile Java and Dynamic Linking

Infrastructure associated with dynamic linking in Java is simple: all classes are
dynamically linked. Loading and linking them is a built-in feature of the environ-
ment, which is necessarily based on signatures.
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Table 4.1 Average class file content in CLDC library classes

Item Percentage

Metadata 45.4%
Strings 34.8%
Bytecodes 19.1%
Class field data 0.4%
Instance field data 0.4%

Table 4.2 Effect of compression and different application structures

Format 14 Classes 1 Class

No compression 14 019 7467
No compression, obfuscated 13 093 6929
JAR 10 111 3552
JAR obfuscated 10 048 3540
Pack 4 563 3849
Pack.gz 2 568 2235

When using MIDP Java, all necessary classes are loaded when an application is
initiated. At the same time, some measures are taken to check that the application
will not run into invalid references, for instance, which is assisted by the build mech-
anism described in Chapter 8. Because linking is performed using the actual names,
the profile of memory consumption also includes a lots of metadata (Table 4.11)
(Hartikainen, 2005).

A related issue is that in many cases, classes contain the same information over
and over again. The reason is that for instance method names are often the same
(or similar) in different classes, in particular those that have the standard denotation
in bytecode, such as constructors, for example. Therefore, using different formats
can considerably alter memory consumption. As an example, Table 4.2 introduces
sizes of an application implemented as 14 and as 1 class, and the effect of different
compressions in accordance to Hartikainen et al. (2006). As an additional example
of the effect of compression, Table 4.3 introduces the effect of different compres-
sion based on measurements made by Hartikainen et al. (2006) using CLDC 1.1
library classes as the data to be compressed. As examples, we use JAR, Pack200,
JXE, gzip, and tar. Being able to use a more efficient compression when down-
loading applications would result in faster operations. Unfortunately, this requires
modifications to the standard.

1 Metadata includes up to 50% debugging data, whose contribution should also be taken into account.
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Table 4.3 Effect of compression to library classes

Format Size (bytes)

Classes 111 694
JAR 76 517
Pack 43 233
Pack.gz 23 791
tar.gz 46 099
JXE 104 919

For faster startup of applications, many implementations contain some prelink-
ing of standard libraries that will be used by most, if not all, applications in the
virtual machine. Directly embedding the libraries in the core virtual machine in a
precompiled and prelinked form leads to larger memory consumption, because Java
bytecode is relatively efficient and all the libraries are not always needed. However,
application startup time can be enhanced considerably, as no actual loading needs
to be performed.

Finally, when using MIDP Java, only the default class loader can be used, which
restricts the possible options of a programmer, but reduces memory footprint of
the virtual machine, allows a simpler implementation, and simplifies the underlying
security scheme. Another simplification is that no opportunity to implement plugins
is offered.

4.7 Symbian OS Dynamic Libraries

Symbian OS dynamic libraries are a realization of the offset-based mechanism
described earlier. When libraries are used, they are sought from the same disk as
the process with which the libraries will be linked has been started. Therefore,
in-place execution can be used, if the hosting process resides in ROM.

4.7.1 Standard Structure of Dynamically Linked Libraries

The general structure of dynamically linked libraries in the Symbian environment
is based on static offset-based linking, and the export interface table is referred to
as ordinal. There are several key concepts that are related to the topic, including
the library structure, applied implementation techniques, and binary compatibility.
We will address these topics in more detail in the following.

Structure of Dynamically Linked Libraries

Because the main implementation language of Symbian OS programs, C++, as such
does not support the separation of a DLL interface, special macros are used for
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defining the interface when composing Symbian programs. First, macro IMPORT_C
is to be used in header files to determine the methods that are to be made visible
from the library. Then, macro EXPORT_C is to be used in the actual file when the
method is a virtual method.2 Of particular importance is the fact that the above
macros are only needed when composing code for the actual device. The emulator
of the Symbian environment does not need the macros. Additional consideration
must be given to the creation of all files associated with a DLL interface, freezing.
Once performed, auxiliary files will be generated that enable linking of the library
to other components. For obvious reasons, the basis of forming the auxiliary file
must be based on the same (or compatible in terms of interface generation) code as
will be used in the application to access the operations.

Implementing a Sample Model as a Dynamically Linked Library

Let us consider next that we wish to implement the engine of the sample application
given in Chapter 3 as a separate dynamically linked library. The header and the
code of the library are given in files qaeng.h and qaeng.cpp, respectively.

The header of the dynamic library is almost the same as the one given earlier.
The only difference is that a number of IMPORT_C macros are needed, resulting in
the following listing:

#include <e32std.h>
#include <e32base.h>
#include <badesca.h> // Array use from badesca.h.

class CQAEng : public CBase
{

public:
IMPORT_C static CQAEng* NewL();
IMPORT_C ~CQAEng();
IMPORT_C void Select();
IMPORT_C TPtrC Answer();
IMPORT_C TPtrC Question();
IMPORT_C TBool Used();
IMPORT_C void Reset();

protected:
void ConstructL();
CQAEng();

private:
TInt iAnswer, iQuestion;
TBool iUsed;
CDesCArrayFlat * iQuestions, * iAnswers;

};

2 The minimal definition for exported functions differs slightly in different sources and contexts. Here, we give the
most general definition.

TEAM LinG



122 Programming Mobile Devices

Finally, in the implementation, we again need a number of macros, this time
EXPORT_C. This leads to the following definition for NewL, for example:

EXPORT_C CQAEng * CQAEng::NewL()
{
CQAEng* self = new (ELeave) CQAEng;
CleanupStack::PushL(self);
self->ConstructL();
CleanupStack::Pop();
return self;
}

Similar treatment is given to other methods that will be visible from this library,
covering essentially those that had macro IMPORT_C above.

In addition, we need to introduce the necessary entry point (E32Dll) to the
dynamically linked library, which is not unlike the one that was introduced already
in connection with the concept of applications:

EXPORT_C TInt E32Dll( TDllReason )
{
return KErrNone;
}

Method ConstructL and constructor remain unaltered, as they are visible at the
DLL interface through associated factory functions only.

4.7.2 Managing Binary Compatibility

In order to implement applications that run on several different devices, preserving
binary compatibility of libraries is an important issue to consider. Fundamentally,
the main principle is to ensure that new methods are only added to the end of the
ordinate, never in between the methods that have been used in older versions of
the libraries. For obvious reasons, performing this is only a concern if a dynamic
library is used by several applications, and the applications cannot be upgraded at
the same time as the library. In particular, this therefore is a concern of platform
manufacturers, as all the platforms should ideally remain backward compatible.

Achieving such a strategy in an implementation is not straightforward in prac-
tice, however, but requires consideration of the effects of changes at the level of
generated code. A number of more elaborate binary compatibility rules have been
introduced by Stitchbury (2004):

• Do not change the size of a class object. Exceptions to this rule are cases when
one can ensure that the class is not externally derivable, all allocations of objects
of this class take place in one’s own component, and the class has a virtual
destructor.
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• Do not remove anything accessible. Otherwise clients of the library can access
wrong variables.

• Do not rearrange accessible class member data. This modifies their representation
in memory, and thus lets client programs access wrong variables.

• Do not rearrange the ordinal of exported functions. This will lead to calling wrong
methods because ordinal is the basis for linking.

• Do not add, remove, or modify the virtual functions of externally derivable classes.
This will break binary compatibility for obvious reasons.

• Do not re-order virtual functions. C++ implementations commonly use the order
in which virtual member functions are specified in the class definition as the only
factor that affects now they appear in the virtual function table.

• Do not override a virtual function that was previously inherited. Performing this
alters the virtual function table of the class. Then, clients compiled against the
old and new virtual function table behave differently.

• Do not modify the documented semantics of an API.
• Do not remove const.
• Do not change from pass by value to pass by reference, or vice versa. Generated

code will be totally different, resulting in errors in execution.

In addition to the above cases, which clearly break the binary compatibility,
Stitchbury (2004) also defines some principles for developing flexible dynamic
libraries. While they may not be a risk as such, common needs of evolution can
lead to difficulties, especially when considering the long-term future of the system.

• Do not inline functions.
• Do not expose any public or protected member data. This in general is considered

a bad practice.
• Allow object initialization to leave.
• Override virtual functions that are expected to be overridden in the future. This

will not lead one to trust on the underlying behavior.
• Provide ‘spare’ member data and virtual functions. As adding of methods and

data can be difficult once the interface and the contents of an object are fixed
due to compatibility reasons, precautions can be taken to ease maintenance.

Obeying these simple guidelines leaves the developer the option to perform the
following modifications (Stitchbury, 2004):

• API extensions can be introduced. New operations can be added to interfaces, as
long as they do not change those that already exist.

• Private internals of a class can be modified. They are local to the class, so it can
implement them in any desired fashion.

• Access specification can be relaxed. Old clients that can survive with a more
restricted access will not be harmed with this.
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• Pointers can be substituted with references and vice versa.
• The names of exported non-virtual functions can be modified. While this does not

cause technical problems because the ordinal is not altered, practical consequences
need also be considered, in particular semantics.

• Input can be widened and output can be narrowed. Again, old clients are not
affected with this change.

• Specifier const can be applied.

4.7.3 ECOM Component Model

ECOM component framework is a Symbian OS implementation for plugin com-
ponents. Used in devices from version 8.0 onwards, it provides facilities for using
polymorphic dynamically linked libraries. Figure 4.7 illustrates clients, interfaces,
implementations for the interfaces, and the role of the ECOM framework, assuming
that some kind of crypting software (CCryptoSW) is to be implemented as a plugin
(Stitchbury, 2004).

An ECOM interface (CCryptoIF in the figure) has the following characteristics
(Stitchbury, 2004):

1. It is an abstract class with a set of one or more pure virtual functions.
2. It must provide one or more factory functions to allow clients to instantiate an

interface implementation object.
3. It must provide means for its clients to release it (for example a destructor,

Release, Close, or Deallocate).
4. It has a TUid data member, which can be used internally to identify an imple-

mentation instance for cleanup purposes.

In order to use the framework, one must define factory methods that are used
for instantiating plugins. This can be performed using either the UID of the
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Figure 4.7 ECOM overview
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implementation as a reference, or using a customizable ECOM resolver to find
a default implementation (Stitchbury, 2004).

Actual components are implemented using the same mechanism as all dynami-
cally linked libraries. However, an additional instantiation function is needed that
the library registers to the ECOM framework. This can (and in many cases should)
be a NewL, for instance. A plugin registers this method by exporting a standard
function ImplementationProxyGroup. which returns a pointer to an array of
instances of class ImplementationProxy objects. This is the only method that
the library exports. Each ImplementationProxy object represents a single imple-
mentation class, and contains the TUid, which identifies the implementation and a
pointer to its instantiation method (Stitchbury, 2004).

Polymorphic dynamically linked libraries can also be implemented without using
ECOM. However, then the whole responsibility must be assumed by the developer
in full. Such an implementation was commonly used before the introduction of
ECOM facilities. Obviously, for future use, ECOM is the preferred mechanism in
most applications and facilities.

4.8 Summary

• Dynamically loaded libraries enable memory savings, because only those libraries
that are needed must be present. However, as the implementation of the necessary
library infrastructure requires memory, and loading of dynamic libraries takes
time, their use must be carefully considered.

• Release definition is the process that defines which files are included in a com-
pleted system.

• Linking can be based on method signatures, like in Java, or on more static
approaches, where for instance offset of a function is used, like in Symbian.

– Using method signatures is more flexible but there is considerable memory
overhead as signatures must be available even after the compilation.

– Using offsets offers better performance but can lead to complex error cases if
an offset mismatch occurs.

This may also have an impact on the size of units; in Java all classes are linked
dynamically, whereas in Symbian OS dynamically linked libraries are explicitly
composed in terms of classes and associated export interfaces.

• Plugin implementations are special types of dynamically loaded libraries whose
interface is the same but whose implementations may vary. This enables different
types of adaptation in a controlled and sophisticated fashion.

• Plugin implementation requires

1. a common interface definition, which provides an abstraction for the operation,
2. an implementation for the interface; in many cases several implementations

are allowed for versatility,
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3. a framework for selecting, loading, and unloading the different implementa-
tions.

• Dynamic libraries can be used as a technique for specializing a framework in a
controlled fashion.

4.9 Exercises

1. Assume that the memory limit pattern is followed in the design of a system
consisting of dynamically linked libraries and programs that load and unload
DLLs when executed. Should the sum of planned memory consumption be
more, equal, or less than the actual amount of memory in a device? Why?
What are the consequences of the different choices?

2. What kinds of problems are possible when a dynamically linked library and
an application are separated in the device? What kinds of precautions could be
made? How do signature- and ordinal-based approaches differ in this respect?

3. For what purposes can one assume plugins to be used in common applications
of mobile devices?

4. What if one needs several plugins at the same time? For instance, how would
an implementation be composed, where upon receiving a MMS, one wishes to
reply with an SMS? What kinds of problems does such a design contain?

5. What kinds of methods would one need when defining an interface for a generic
messaging (SMS, MMS, email) plugin? Would one class whose instantiation
is required be enough, or should a group of components be constructed when
using the factory method?

6. What kinds of errors can occur if the interface of a dynamically linked library
relying on the use of an ordinal is incorrectly frozen?
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Concurrency

5.1 Motivation

In Chapter 3, applications running inside mobile devices were considered reactive.
This, however, can be generalized to hold at the device level as well, since it is the
device that is assumed to provide responses, not the applications only. Moreover, it
is not solely applications that receive and respond to events, but it is a joint effort
of several components of the device. These components can include hardware,
low-level software directly associated with it, or some other piece of software.

As the result of the above, the software run inside a mobile device can in general
be taken as an event handler, which simply responds to the events received from the
outside world. Because the outside world behaves nondeterministically from the view-
point of the device, the device must be enabled to react to several incoming requests
at the same time. This calls for an implementation that respects this requirement, and
allows concurrent response to several simultaneous incoming events.

The implementation mechanisms for concurrent programming are more or less
standardized. As already discussed, threads and processes give boundaries for man-
aging executions and resources. In addition, some mechanisms are available to
ensure that several threads do not modify the same variables at the same time. In
the following, we will address such issues in more detail.

5.2 Infrastructure for Concurrent Programming
When programming a system where some input is generated by the environment
and requires immediate reaction whereas other input leads to extensive executions,
parallel processing is usually needed. Then, based on the priority of the thread, the
most important stimuli will be handled first. Fundamentally, three different cases
can be considered:

1. Executions are unknown to each other. However, they can still affect each other
by competing for the same resource, like processor execution time.

Programming Mobile Devices: An Introduction for Practitioners Tommi Mikkonen
 2007 John Wiley & Sons, Ltd
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2. Executions are aware of each other indirectly. For instance, they may have some
common shared resource via which they cooperate.

3. Executions communicate with each other directly.

Such executions are commonly implemented using threading, which we will address
in the following.

5.2.1 Threading

Threads that wait for stimuli and react to them are a commonly used mechanism
for creating highly responsive applications. This allows incoming stimuli to initiate
operations, which in turn can generate new stimuli for other threads, or perhaps
more generally lead to the execution of some procedures by the threads themselves.
The cost of using threads is that each thread essentially requires memory for one
execution stack, and causes small overhead during scheduling.

As already discussed in Chapter 1, threads can be executed in a pre-emptive or
non-pre-emptive fashion. The former means that the thread that is being executed
can be interrupted, and another thread can be selected for execution. The latter
implies that once a thread is being executed, its execution will only be interrupted
for another thread when the executing thread is ready. Low-end mobile devices,
optimized for low costs in their design, can be implemented using a non-pre-emptive
scheduling policy, where all executions take place following a pre-planned order
of execution that satisfies all the deadlines. In more sophisticated mobile devices,
pre-emptive executions based on thread priorities are used. Such an approach offers
simplified facilities for the application programmer, as the threads need not consider
their executions. Instead, the system selects the thread to be executed next according
to different algorithms. Usually, priorities are introduced that determine the order of
execution, i.e., threads whose priorities are higher are selected for execution before
considering lower-priority threads.

5.2.2 Inter-Thread Communication

While threads are a mechanism for creating executions, in order to accomplish
operations at a higher level of abstraction, several threads are often needed that
cooperate for completing a task. For example, establishing and maintaining a phone
call requires the cooperation of a user interface, communication protocols, radio
interface, a microphone, a speaker, and a unit that coordinates the collaboration.
This cooperation requires inter-thread communication.

There are several mechanisms for making threads communicate. In the following,
we address the most common approaches that can be used in mobile devices.

Shared Memory

Probably the simplest form of communication is the case where threads use a
shared variable for their communication. In most cases, the access to the variable

TEAM LinG



Concurrency 129

must be implemented such that threads can temporarily block each other, so that
only one thread at a time performs some operations on the variable. In general,
such operations commonly address memory that is shared by a number of threads,
and blocking is needed to ensure that only one thread at a time enters the critical
region, i.e., a part of code where only one (or some predefined number of) thread
should enter at a time and in which atomic changes to a number of variables can be
made. The situation can be simplified by using a convention where only one-way
communication is used, i.e., only one thread is able to set the value of a certain
variable, and other threads can only read the value. Then, no locking is needed for
accessing the variable, assuming that there is no other reason for atomicity.

For more complex cases, semaphores are a common technique for ensuring that
only one thread at a time enters the critical region. In the classical definition,
semaphores offer two operations, P and V. These operations decrement and incre-
ment the value of a semaphore counter, whose initial value determines how many
threads are allowed to pass the P operation. Further threads will stop and wait in P
until the next V is executed by some other thread.

There are also more abstract ways to implement a function similar to the above.
Signal-wait operations are commonly used for inter-thread communication, and they
make it possible for a thread to wait for a certain signal before proceeding beyond
a certain point in its execution. Furthermore, monitors are a programming language
level abstraction for implementing cooperation of threads, where access restrictions
can be given in operations.

Message Passing

Message passing is another commonly used mechanism for implementing coopera-
tion between threads. In this type of an approach, the idea is that threads can send
messages to each other, and that kernel will deliver the messages. In other words,
the architecture of such a system resembles message-dispatching architecture, where
the kernel acts as the bus, and individual processes are the stations attached to it.

In many cases, message passing is in principle hidden from the developer. Then,
the developer can simply call a simple API routine, and the infrastructure handles
the actual execution. However, side-effects of the message passing system often
become visible to the developer when certain types of interactions take place in
parallel. For instance, it may be so that the execution of a thread is blocked until
the thread receiving the message responds (synchronous communication), or that
in order to receive the reply a special operation must be called, which register the
thread to receive the result (asynchronous communication). We will return to such
topics in the following chapter.

5.2.3 Common Problems

Concurrent programs can fail in three different ways. One category of errors in mutual
exclusion can lead to locking, where all threads wait for each other to release resources
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that they can reserve. Secondly, starvation occurs when threads reserve resources such
that some particular thread can never reserve all the resources it needs at the same time.
Thirdly, errors with regard to atomic operations, i.e., operations that are to be executed
in full without any intervention from other threads, can lead to a failure. The two first
problems can be solved by introducing a watchdog mechanism that ensures that all
threads are executed by adding a simple call to a monitoring routine to all threads.
However, with respect to atomicity, it is harder to implement a safety mechanism,
although additional sanity check computations and data can be used.

From the perspective of a programmer, the introduction of concurrent executions
inevitably leads to further complexity. Firstly, design is more difficult, because
several parallel paths must be considered. As a result, the order of operations that is
observed to take place can vary from one execution to another. As a consequence,
also debugging becomes complicated, because errors are not repeatable; instead,
executions can take place in different order at different times, of which only one
path may lead to a failure. As in many cases the most rational starting point is to be
able to reproduce an error; these non-repeatable errors can be virtually untraceable.

Another design-level problem is about design practices. As mutual exclusion
can result in delays (one thread must wait until some other thread has exited the
critical section), it is common that performance of the first version is improved
by reconsidering mutual exclusion, which often indeed is overly safe in the first
version. However, tampering with such detail without thoroughly understanding the
logic of the system can seriously violate the design.

As concurrency can be considered as a conceptually difficult topic, and, further-
more, mobile devices often contain only one application processor that is shared
by all applications, one way to deal with problems related to mutual exclusion is
to fake concurrency in a fashion where the design can be eased.

5.3 Faking Concurrency
In addition to the above difficulties, threads are a relatively heavy implementation
mechanism in some cases, especially when several operations can occur at the same
time. Then, each operation would basically require a thread that waits at a semaphore
or reception operation of a message, resulting in excessive threading in applications.
In addition, the use of threads can be considered error-prone, because repeating errors
that occur due to for example mismatches at critical regions is next to impossible.

In order to avoid the above problems, it is often enough to enable pseudo-parallel
executions where for example only one thread is responsible for all the operations,
even if the programmer is allowed to write code as if there are several parallel
executions taking place. This effectively leads to serialization of executions. Such seri-
alization can be implemented in a fashion that offers several positive consequences:

• Non-pre-emptive processing reduces overhead. Executions are not interrupted
by other operations, resulting in better performance in the sense of completed
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executions, because the overhead of stopped and resumed executions is elim-
inated. Instead of defining priorities of execution per thread in a pre-emptive
fashion, the event handler determines the priorities in a non-pre-emptive fash-
ion where each event is completely handled before the next event handling is
initiated. Effectively, this means that event handling is serialized.

• No need to consider critical regions, as the programmer can design things so that
no such issues arise. Moreover, only one event at a time will be under handling,
which simplifies this.

• Simplified concurrency scheme leaves less potential for design and programming
errors. For instance, mutual exclusion can be made obsolete if only one thread
executes the operations associated with the events.

• Simplified implementation in terms of necessary facilities can lead to savings in
development effort.

• Porting can be eased, assuming that the same application is to be used in dif-
ferent devices with different operating systems that offer different facilities for a
programmer. Then, it is enough to implement one thread and its facilities instead
of porting all the necessary infrastructure of concurrent programming.

• It is easier to consider the net effect of the total system, because for instance only
one operating system thread can be allocated to serve all the events. Then, even
if a lot of computations are introduced, high-priority threads of the operating
system are not affected and it is still easy to estimate required operating system
resources. This effectively helps in preventing overloading.

However, taking the gains from the above list does not come for free, but there is
a penalty hidden in the use of serialized executions as well. If an operation cannot be
interrupted for another, a more urgent operation may have to wait for the completion
of a less important one. Furthermore, optimizing the serialization in one thread can
lead to degenerated performance for the application. Additional consideration must
be given to long-lasting executions, which may require the implementation of some
kind of a continuation mechanism.

Finally, an important choice to be made when composing a design is to decide
whether there will be support for faked concurrency in the implementation infras-
tructure, or whether the programmers will be responsible for it. In the first case, one
can write applications as if concurrent executions would be available using prim-
itives described above, and the infrastructure will be responsible for optimization.
Then, the programmers can use data types and operations commonly associated with
threads, but the run-time environment will be responsible for performing the seri-
alization. If the programmer takes the responsibility for serialized parallelism, the
design will inevitably reflect the selected implementation mechanism, thus adding
complexity to the design of the resulting system, at least potentially. In practice, an
implementation for such design can be composed by allowing asynchronous request
of operations, where the execution environment generates an event upon completion.
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This event can then be handled with a mechanism not unlike that introduced for
event handling in Chapter 3.

For obvious reasons, real-time critical operations can hardly benefit from faking
concurrency. Therefore, some systems allow both serialized form of pseudo-parallel
executions as well as full threading. Still, even in this case, native threads will be
scheduled for the execution by the underlying operating system, which in fact is
only a more low-level mechanism for serializing the execution when only one
application processor is used.

5.4 MIDP Java and Concurrency

While Java again in principle hides the implementation of the threading model
from the user, its details can become visible to the programmer in some cases. In
particular, the developers must consider the following issues.

5.4.1 Threading in Virtual Machine

In the implementation of the Java virtual machine, one important topic is how to
implement threads. There are two alternative implementations, one where threads
of the underlying operating system are used for implementing Java threads, and
the other where the used virtual machine is run in one operating system thread,
and it is responsible for scheduling Java threads for execution. The latter types
of threads are often referred to as green threads; one cannot see them from green
grass. In many ways, the scheme can be considered as a sophisticated form of
event-based programming, because in essence, the virtual machine simply acts as
an event handler and schedules the different threads into execution in accordance
to incoming events.

In general, threads that are directly associated with the operating system’s threads
can be considered better for performance, because the threads get execution time
from the scheduler of the operating system. However, porting of the system to
different operating systems becomes more complex when threads are intimately
connected to the operating system particularities. An additional source of complexity
is that in addition to porting, threads must be manageable by the virtual machine
when exceptions take place and some cleanup must be performed.

As a result of the above complexities, green threads form an attractive imple-
mentation for a system that is used in mobile devices.

5.4.2 Using Threads in Mobile Java

Using threads in Java is simple. There is a type thread, that can be instantiated as
a Runnable, which then creates a new thread. The new thread starts its execution
from method run after the creator calls the start method of the thread. Mutual
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exclusion is implemented either in the fashion the methods are called or using the
synchronized keyword, which enables monitor-like implementations.

As an example, consider the following case. There is a shared variable that is
shared by two classes. The variable is hosted by IncrementerThread, but the
other thread (MyThread) is allowed to access the value directly.

The hosting thread (instance of IncrementerThread) will only increment the
shared integer value. The definition of the thread is the following:

public class IncrementerThread
extends Thread {
public int i;
public IncrementerThread() {

i = 0;
Thread t = new Thread(this);
t.start();

}
public void run() { for(;;) i++; }

}

The other thread runs a midlet that acts as the user interface for accessing the
shared variable. Operations are given for exiting the program and for addressing the
shared variable. Moreover, the midlet owns the thread that hosts the shared value:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class MyThread
extends MIDlet
implements CommandListener {

private Command exitCommand, toggleCommand;

private TextBox tb;
private IncrementerThread t;

The constructor of the midlet simply creates new commands to be used for con-
trolling the execution:

public MyThread() {
exitCommand = new Command("EXIT", Command.EXIT, 1);
toggleCommand = new Command("Toggle", Command.OK, 2);

t = null; // No thread is instantiated in this phase.
}
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The normal operations associated with the method are the obvious ones, listed as
follows. The command handler of the midlet allows the user to select exit or reading
the shared value. The latter is managed in full in method toggleThread:

protected void startApp() {
tb = new TextBox("Thread Example",

"Thread was started", 80, 0);
tb.addCommand(toggleCommand);
tb.addCommand(exitCommand);
tb.setCommandListener(this);
Display.getDisplay(this).setCurrent(tb);
t = new IncrementerThread();

}

public void commandAction(Command c, Displayable d) {
if (c == exitCommand) {

destroyApp(false);
notifyDestroyed();

} else { toggleThread(); t.interrupt(); }
}

protected void destroyApp(boolean u) {}

protected void pauseApp() {}

Method toggleThread is responsible for the main actions of the midlet. When
called, it reports the value of the shared variable to the user, again using a TextBox:

private void toggleThread()
{

tb = new TextBox("Thread Example",
"Thread run " + t.i + " times",
80, 0);

tb.addCommand(toggleCommand);
tb.addCommand(exitCommand);
tb.setCommandListener(this);
Display.getDisplay(this).setCurrent(tb);

} // toggleThread
} // MyThread

The application can now be run to verify the behavior of the tasking system. Tog-
gling the thread with the associated button gives an idea on how efficiently threading
takes place when run by the underlying virtual machine.
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5.4.3 Problems with Java Threading

Perhaps the main problem of the scheme presented above is that changing between
threads is a very costly operation. As it is the virtual machine that handles both
threads, and as the hosting operating systems can consider the virtual machine as
a separate system from an implementation perspective, to which only restricted
resources are given in the first place, forcing the virtual machine to perform exces-
sive threading is harmful for performance. As a result, the implementation leaks
and becomes visible to the developer.

Another issue worth considering is that the threads are rather independent enti-
ties, which is in line with the principle that objects are entities of their own. For
instance, in order to introduce an operation that would terminate the thread in the
above system, commonly considered implementation alternatives where a master
thread would directly control the life of an auxiliary thread do not work. Firstly,
simply setting the thread to null when it should terminate will not lead to the
garbage collector eliminating the thread, although this could be considered a ratio-
nal interpretation, as there are several references to it in the internal representation
of the run-time environment. Furthermore, based on studying practical implemen-
tations, operations for terminating threads have been left out from early versions
of MIDP Java, and even the versions that do support it do not work too well with
such a tight loop as used above. Therefore, the correct way to terminate the thread
would be to extend the incrementer loop in a fashion that would allow the thread
to decide to terminate itself. For example, the following code could be used:

public void run() {
while (still_running) i++;

}

Then, stopping the thread would only require setting variable still_running to
false in some other method of the class. However, continuous checking of this
condition is an obvious overhead of this solution that would be eliminated if thread
management were implemented in a different fashion.

5.5 Symbian OS and Concurrency
As in many other respects as well, the Symbian OS concurrency mechanisms rely
on the talent of the designers. On the one hand, one can use common facilities, such
as threads and processes, which are available in Symbian OS. On the other hand, a
framework called active objects is included that enables simplified, pseudo-parallel
executions that use less resources. However, the correct use of the framework
requires that the developer introduce an adequate specialization of the framework.

5.5.1 Overview

Symbian OS threads are similar to those that can be commonly found from many
operating systems, and they can also be used in a similar fashion. However, in
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many cases, it is more adequate to use active objects, which is the Symbian OS
way to perform multitasking in a resource-friendly fashion. In addition, the normal
infrastructure for concurrency, including for instance semaphores, is included in the
platform.

In the following, we give an overview to using threads and active objects. Towards
the end of the section, the focus is placed on the latter, as threading in the Symbian
OS environment is not too different from other platforms on the one hand, and
active objects are the fashion the platform favors at the level of application on the
other hand, taking practicalities of the restricted environment into account.

Threads

As such, Symbian OS threads, implemented as class RThread, are similar to the
common thread concept already discussed earlier. However, at the level of details,
there have been several upgrades when the operating system has been incorporated
with enhanced real-time properties in Symbian OS v.8.0B.

Let us next consider a sample program that demonstrates the use of threads in the
Symbian environment using a shared variable i to verify the effect of executions.
The structure of the example is similar to that of the above Java example, except
that instead of classes, we simply use procedures that provide the means to execute
threads in the Symbian environment. Here, variable i is used for communication,
and myOp is the operation that is repeatedly executed by the newly created thread.
Moreover, explicit kill is used to terminate the thread, a detail that was not an
option with mobile Java.

First, we need some header files that define the necessary thread and Symbian
infrastructure. In addition, we introduce the shared variable:

#include <e32cons.h>
#include <e32std.h>

TInt i; // Communication variable.

For every new thread, a function is needed that will act as the main procedure
of the thread, referred to as thread function. In this example, we use a simplistic
function myOp that increments the value of the shared variable i in a continuous
fashion:

void myOp(TAny* aArg) // Procedure run by a new thread.
{
for(;;) i++;
}

Next, we give operation MyConsoleL which is responsible for the management
of the new thread. First, the operation resets the shared variable, then it creates a
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new thread that increments the value of the shared variable, and when the user hits
the keyboard, the operation terminates the new thread and reports to the user the
number of executed loops in the new thread. This is implemented as follows:

void MyConsoleL()
{
LOCAL_D CConsoleBase* console;
RThread myThread;

console = Console::NewL(_L("Thread-use"),
TSize(KConsFullScreen,
KConsFullScreen));

CleanupStack::PushL(console);

i = 0; // Shared thread is reset in the beginning.

TInt status = // Create thread.
myThread.Create(

_L("TEST THREAD"), // Thread name.
(TThreadFunction)myOp, // Called procedure.
0x1000, // Size of stack.
0x1000, // Minimum size of thread’s heap.
0x1000, // Maximum size of thread’s heap.
NULL, // Data to be passed to the thread.
EOwnerProcess); // Owned by the current process.

User::LeaveIfError(status);
// Continue only if thread creation was successful.

console->Printf(_L("Thread created.\n"));

myThread.Resume(); // Activates the thread.

console->Getch(); // Wait for keyboard hit.

myThread.Kill(KErrNone); // Terminate the thread.
myThread.Close(); // Closes the connection to the thread.

console->Printf(_L("Thread run %d rounds.\n"), i);
console->Getch(); // Wait for user action.

CleanupStack::Pop(); // Console
delete console;
console = 0;
}
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Finally, the main program is needed that creates the cleanup stack of the appli-
cation and calls MyConsoleL. This is introduced in the following:

GLDEF_C TInt E32Main() // main function called by E32
{
__UHEAP_MARK;
CTrapCleanup* cleanup=CTrapCleanup::New();

TRAPD(error, MyConsoleL());
__ASSERT_ALWAYS(!error,User::Panic(_L("EPOC32EX"),error));

delete cleanup;
__UHEAP_MARKEND;
return 0;
}

Once created, Symbian OS threads are pre-emptively scheduled, although kernel
threads can also be scheduled in a non-pre-emptive fashion to enable improved real-
time features. The currently running thread is the highest priority thread that is ready
to be run. When several threads have the same priority, they get execution time in
slices using the round-robin algorithm. Obviously, in a multi-threaded application,
thread priorities must be carefully designed. When needed, the priority can be set
using RThread::SetPriority method.

In addition to managing priorities, a thread can be suspended (operation Suspend)
and resumed (Resume), which was already introduced in the above example, as well
as terminated (methods Kill and Terminate). Obviously, a thread can also be
terminated with a panic, which is to be reserved for special events. One can also
register to obtain a notification when a thread is terminated (RThread::Logon),
and query the reason for the termination (RThread::ExitType).

As threads are often located in different processes, they cannot communicate via
shared memory. Instead, inter-thread data transfer is to be used. Methods called
ReadL, WriteL, GetDesLength, and GetDesMaxLength have been provided for
this purpose. The use of these methods is however dependent on the Symbian OS
version used, as the implementation in the kernel has been altered.

Active Objects

Active objects are a Symbian-specific way to implement concurrent executions in
a serialized fashion. The rationale is that by using a serialized implementation,
where one thread serves several active objects rather than using a separate listener
for every possible incoming event (Figure 5.1), the following advances can be
gained.
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Event handlers
(each a separate thread)

External events External events
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(one per thread)

Event handlers 
(each an active object)

Figure 5.1 Thread-based implementation versus active objects

To contrast the use of threads, we will introduce a simple active object in the
following. In general, the use of active objects is based on the following concepts:

1. Active object, which includes the operations that should be performed in a con-
current (or more precisely, pseudo-parallel) fashion.

2. Active scheduler, which is the object responsible for scheduling active objects
into execution.

3. Service providers, which provide services to active objects and trigger their exe-
cutions in a parallel fashion. For instance, they may communicate with external
systems.

Figure 5.2 illustrates the use of active objects. The different phases introduced in
the figure have the following semantics:

1. An active scheduler, i.e., a software component responsible for active objects’
scheduling, is created and installed in the Symbian OS infrastructure. A thread
is always associated with the scheduler. In code, class CActiveScheduler or
its derivative must be used.

2. Active object, derived from CActive, that is needed is created and added to the
scheduler. In addition, a request is made for a service.

3. Active object’s request function activates the service provider. Then, the active
object sets its iActive member variable to true to signal that it is now ready to
serve incoming events, and iStatus to pending to signal that a request is now
pending.

4. Scheduler is started, and the active object now waits for incoming requests.

TEAM LinG



140 Programming Mobile Devices

Create and install 
Active Scheduler

Create AO, 
issue request, 

add to Scheduler

Start Scheduler

Cleanup, terminate

Active scheduler

Active object Service provider

Wait for any req

Call AO RunL

Activate request function 
set iActive true

RunL
(redo/quit)

Set iStatus to
Pending

Req completed, 
reset iStatus

Application

1 2

3

Service
complete

4

6

5

7

Figure 5.2 Operation of active objects

5. When service is completed, iStatus is reset. This will be signaled to the active
scheduler.

6. When active scheduler is activated, it calls active object’s RunL method.
7. When RunL completes, it can either quit or redo the service request.
8. When the execution of the system completes, all objects are deallocated.

In a nutshell, a single thread is used for pseudo-parallel treatment of a number
of operations, which are defined using active objects. If necessary, it is possible to
define a derived version of the active scheduler that includes application-specific fea-
tures. The implementation is wrapped in a framework in accordance to the principles
of object-oriented design. Unfortunately, due to the simplicity of the implemen-
tation and the complexity of the design, capturing the behavior at the level of
implementation is often easier.

Discussion

To summarize, in Symbian OS, the special value of threads is in being able to act
as the unit of execution. However, actual concurrent executions are usually handled
with active objects that offer several benefits.

• Design is eased, as all operations are executed in a non-pre-emptive fashion. This
liberates the developer from considering mutual exclusion.

• Memory can be saved. The memory consumption of an active object is some
bytes, whereas a thread needs 4 kB of kernel memory, 12 kB of user-side
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memory. Some memory is required for hosting an object of class DThread inside
the kernel.

• Performance is improved for the total system, as no context switching is needed,
and the execution is not stopped in favor of other events served by the same
thread.

• Generic event handler can be offered in application architecture or some other
library component.

Let us next consider a practical implementation of an active object at the level of
code.

5.5.2 Sample Active Object

The particular active object we will introduce next uses a timer as an external
service that will asynchronously generate an event after a certain time (RTimer). In
addition, to simplify the program we now give a global variable console, which is
used in both the main program and the active object. Otherwise parameters would
have to be used to inform the active object about the console to be used in RunL.
This in turn might confuse the actual logic of the operation:

#include <e32base.h> // Needed for active objects.
#include <e32cons.h> // Needed for using constants.

LOCAL_D CConsoleBase* console; // Write all messages to this.

As usual when composing active objects, the class to be developed is derived from
class CActive:

class CDelayer : public CActive
{

Methods of the class include normal facilities for two-phase construction (con-
structor, ConstructL, and NewL),destructor, and three methods related to active
object features. SetHello sets the timer to cause an event after a delay given as
a parameter, RunL is the method that contains the actual operation, and DoCancel
is used to cancel waiting for an event. Methods RunL and DoCancel belong to the
methods of CActive. At the level of code, this results in the following definition:

public:
static CDelayer *NewL();
~CDelayer();
void SetHello(TInt aDelay);

private:
CDelayer();
void ConstructL();

protected:
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void RunL();
void DoCancel();

In addition, the class includes a timer that is used as the event generator. This is
implemented as a private variable, as it is only used by the class itself:

private:
RTimer iTimer;
}; // class

This completes the header file. Next, we introduce a sample implementation for the
active object. To begin with, we introduce the normal constructors and destructor:

CDelayer::CDelayer(): CActive(EPriorityStandard) {}
// Priority of the active object is EPriorityStandard.

void CDelayer::ConstructL()
{
User::LeaveIfError(iTimer.CreateLocal());
CActiveScheduler::Add(this);
// Add this object to the set of active objects.
}

CDelayer * CDelayer::NewL()
{
CDelayer * self = new (ELeave) CDelayer();
CleanupStack::PushL(self);
self->ConstructL();
CleanupStack::Pop(); // self
return self;
}

CDelayer::~CDelayer()
{
Cancel();
// DoCancel implementation requires that destructor calls
// Cancel method.
iTimer.Close();
}

In addition, a method is given for activating a service from some other active party.
In this particular implementation, we use iTimer, which is requested to cause
an event after aDelay microseconds. Finally, when the request is completed, this
active object begins to wait for the event (SetActive):

void CDelayer::SetHello(TInt aDelay)
{
// Nested set operations are forbidden. This is ensured
// by the following assert.
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__ASSERT_ALWAYS(!IsActive(),
User::Panic(_L("CDelayedHello"),

KErrGeneral));
// Request for an event after aDelay.
// iStatus is a member variable of CActive.
iTimer.After(iStatus, aDelay);
// Set this active object active.
SetActive();
}

Finally, the operation that takes care of the actual task is needed. In this sam-
ple implementation, RunL writes some text to the console, and stops the active
scheduler. This returns the control to the point where the scheduler was started:

void CDelayer::RunL()
{
_LIT(KTimer, "\nTimer expired");
console->Printf(KTimer);
// Stop the active scheduler, so the execution can continue.
CActiveScheduler::Stop();
}

Statement CActiveScheduler::Stop stops the execution of this active object.
As a result, the control returns to the main program. If needed, it is possible to
perform something totally different. Furthermore, if the active object introduced by
Symbian application architecture is used, this should not be included in user code in
the first place, assuming that the application relies on the use of a single thread. For
multi-threaded applications, it is not uncommon that one has to implement one’s
own active scheduler.

In addition, the DoCancel operation must be provided in order to cancel any
outstanding request. In this particular case, it is enough to call the cancel method
of the associated timer:

void CDelayer::DoCancel()
{
iTimer.Cancel();
}

Next, we instantiate the active scheduler and the console into which the message is
sent. This is implemented in operation MyConsoleL listed in the following. Note
that console is now a global variable, not an automatic one, and therefore it is
not pushed to the cleanup stack:

int MyConsoleL()
{
console = Console::NewL(_L("Active Object Sample"),

TSize(KConsFullScreen,
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KConsFullScreen));

console->Printf(_L("Creating Scheduler\n"));

CActiveScheduler * as = new (ELeave) CActiveScheduler();
CleanupStack::PushL(as);
CActiveScheduler::Install(as);

console->Printf(_L("Starting Scheduler\n"));

CDelayer * d = CDelayer::NewL();
CleanupStack::PushL(d);
d->SetHello(3000000); // Time in microseconds.

CActiveScheduler::Start();

console->Printf(_L("Ready.\n"));
console->Getch();

CleanupStack::Pop(2); // d, as
delete d;
delete as;

delete console;

return 0;
}

In this code snippet, the call to method CActiveScheduler::Start plays an
important role. It moves the control to the active scheduler, which starts to wait for
events from the environment. In this particular case, the environment consists of the
timer introduced above. Again, because this particular program is single-threaded,
this line would not be needed if Symbian application architecture was used, but it
would be enough to exit from the program.

Finally, we introduce a main program that introduces functions similar to those
already introduced in previous chapters:

GLDEF_C TInt E32Main()
{
__UHEAP_MARK;
CTrapCleanup* cleanup = CTrapCleanup::New();

TRAPD(error, MyConsoleL());
__ASSERT_ALWAYS(!error,User::Panic(_L("EPOC32EX"),error));
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delete cleanup;
__UHEAP_MARKEND;
return 0;
}

This operation completes the sample implementation, and it is now ready for com-
pilation and test runs.

5.5.3 Active Objects and Applications

As already discussed, Symbian applications obeying the structure introduced in
Chapter 3 always include an active scheduler. This facility is the event handler inside
the application architecture that was already used for receiving events from the
graphical user interface.1 Thus, the extension we introduce here can be considered
as an implementation mechanism of the event handling scheme. In terms of an
implementation, user interface components are actually generating events that the
active object of the application automatically handles by dispatching the control to
the right component.

A common design for the implementation of active objects and applica-
tions’ graphical user interfaces is the use of the Observer pattern to implement
the necessary callbacks. Technically, one introduces an auxiliary interface, say
MObserverIF, that is implemented by the view or the controller of an application.
Then, when defining an active object, a reference to this interface is enough, and
only when instantiating an actual object, the actual reference to a concrete element
is needed, following the normal callback routine.

5.5.4 Problems with Active Objects

Like any design solution, active objects are not without problems. One obvious
problem is what to do when an error occurs during the execution of RunL. This
has been solved by allowing method RunError, whose role is to handle such
exceptions elegantly whenever possible. However, it is not obligatory to implement
the method, but a default implementation has been provided that can be overridden
when defining the active object. The default implementation returns an error code to
the object’s active scheduler, which then reacts to this code by panicking the appli-
cation. Therefore, if recovery actions are desired, a corresponding implementation
should be given.

Another problem follows from the fact that the execution of RunL cannot be
interrupted. Therefore, it is possible that a higher-priority event handling must wait
until a lower-priority event has been handled in full. As a solution, long-running

1 More precisely, from the so-called Window Server. We will address Symbian servers in more detail in the
following chapter.
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RunL must be split into several parts and be replaced by a stateful design that knows
from where to continue the next time the method is called. While such problems
are common in event-driven programming, this obviously increases the complexity
of the design. Using State design pattern introduced by Gamma et al. (1995) can
result in improved readability of the final system.

Finally, although active objects are only a mechanism for implementing event
handlers, the implementation can be considered relatively complex. Problems in for
instance splitting RunL can result in difficulties later on when new active objects
are introduced in the scheduler even if the original active objects remain unaltered.
This kind of error can be easily introduced as the system evolves and more tasks
are integrated to it. Furthermore, properties of object-orientation are extensively
used, and a programmer who is not fluent in object-oriented design can face dif-
ficulties in using the scheme, and would value a more traditional implementation
setup. In other words, the downside is that the framework does not really introduce
an abstraction that could leak as such, but rather an implementation architecture
to which the programmer must adapt. In particular, the task of a programmer is
not eased considerably when considering an implementation of an explicit event
handler, in contrast to active object abstraction that gains its properties from the
underlying implementation on the one hand, and from capable developers on the
other.

5.6 Summary

• Concurrent programming can lead to complex designs regarding critical regions.
Furthermore, debugging is often difficult.

• Using program-level pseudo-parallel executions instead of more elaborated con-
currency schemes can offer benefits regarding:

1. improved portability,
2. smaller memory footprint,
3. simplified programming model and eased debugging.

• Supporting built-in facilities has been included in programming environments.

– Mobile Java can offer thread simulation inside the virtual machine, which eases
porting and lets the programmer act as if real threads were used.

– Symbian OS encourages the use of active objects, which must be taken into
account in full by the programmers.

• Observer pattern can be used for enabling the communication between different
parties.
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5.7 Exercises

1. What kind of access should a scheduler provide to its thread management in
order to allow a Java virtual machine implementation that relies on operating
system threads instead of green threads? What kinds of data structures would
then be needed in the virtual machine?

2. Compare MIDP Java’s and Symbian OS’s implementation of pseudo-parallel
executions. what differences must the application developer consider when using
them?

3. Sketch an architecture for a system where the benefits of the Symbian OS active
object scheme would be received, using a design that would more explicitly
show that the system is actually an event handler.

4. Implement a number of sample active objects that listen to several events (for
instance a number of timers). Does the number of parallel (or almost parallel)
events become visible in the execution? How would the developer be instructed
to use the system?

5. What types of properties make active object abstraction leak? How about Java’s
threads that are emulated inside a virtual machine?

6. What kind of a design would allow pre-emptive active objects? What kinds of
advantages and downsides would this imply?

7. Implement the corresponding extensions to the Symbian OS threading example as
was introduced for Java, i.e., a class encapsulating the shared variable. Then com-
pare the performance of threading of Java and Symbian OS. Add also additional
threads and implement mutual exclusion in terms of Synchronize operations
and semaphores. How will these affect the comparison?
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6
Managing Resources

6.1 Resource-Related Concerns in Mobile Devices

A mobile device is a specialized piece of hardware. It has several different types of
resources that may require special monitoring and management activities that require
scalable yet uniform designs. In addition to hardware resources, when the level of
abstraction is raised, some parts of software can be treated as resources as well. At
the very least, applying similar techniques to them can ease the development.

Based on the above, resource management is an important concern when aim-
ing at software running in a mobile device. Following the conventional guidelines
of modularity addressed by Parnas (1972) and Parnas et al. (1985) for instance,
implementing the access to resources is therefore a good candidate for separation
from the rest of the system. In this section, we discuss the different paradigms of
separation and their implications.

6.1.1 Overview

In many ways, each resource included in a mobile device can be considered as a
potential variation and management point. Additional motivation for this is gained
from the fact that different configurations used in actual phones seldom follow the
same line of hardware, but include updates due to pricing and logistics reasons,
for instance. Moreover, many resources offer different facilities to higher levels of
abstraction, Therefore, it is only natural that the underlying software architecture
should adopt a principle where each resource is associated with a manageable,
dedicated software entity. Predicting the actual upgrades of individual pieces of
hardware can be difficult but, in general, it is obvious that hardware updates will
be encountered.

In this kind of situation, the most obvious strategy is to embed hardware depen-
dencies in modules (Figure 6.1). For instance, the parts that are associated with the
file system and disks in general should form a subsystem. In other words, we are
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Figure 6.2 Sequence of events following a key press

essentially creating a manager for all aspects of the file system inside a special-
ized entity. This gives a clear strategy for connecting software to the underlying
hardware. First, a device driver addresses the hardware, and on top of the driver,
a separate resource manager takes care of higher-level concerns. Subsystems can
communicate with each other by for instance sending messages to each other. As
an example, Figure 6.2 represents a situation where the user hits a keyboard, which
triggers a sequence of operations in different resource managing modules. A prac-
tical rule of thumb then is that introducing more management and control functions
inside modules gives better predictability, but consumes resources for management
tasks that do not serve the fundamental purpose of the device.
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In order to isolate such functions or generic service providers from the rest of the
system, the normal facilities of an operating system can be used. Process boundaries
can be used for separating the different resources at the level of an implementation.
Unfortunately this essentially makes the option of handling errors that occur in
the manager of a certain resource more difficult. Still, because it is unlikely that
a special-purpose client application using a resource would be able to make the
resource manager recover from the error, it is possible to embed also recovery
instructions inside the resource manager. Another problem in isolating resource
managers is memory protection: in many cases resource managers can use the same
data but memory protection may require the use of copies. A practical guideline
for designing such isolation is that it should be possible to reconstruct all events
for debugging purposes. This allows one to study the causes of different sequences
of events in isolation and to reveal errors associated with cases that are seldom
executed in practical implementations.

There are two fundamentally different solutions for embedding resources in the
system. The first solution is to put all resources under one control. This can be
implemented using a monolithic kernel or a virtual machine through which the
access to the resources of the device is provided. The alternative is to use an
approach where all resource managers run in different processes and the kernel
only has minimal scheduling and interrupt handling responsibility (microkernel). In
the following, we discuss these alternatives in more detail.

6.1.2 Grouping Resource Managers

A monolithic design, where several, if not all, resource-related operations are
embedded in the OS kernel, requires a design where the kernel includes a large
amount of code and auxiliary data. While these facilities, such as the file system,
need not be part of the kernel for technical reasons, it is often beneficial to include
them in the kernel, as in many cases they share data structures or require communi-
cation with other data structures included in the kernel. The situation is illustrated
in Figure 6.3, where ellipses denote resources and application processes, and the
monolithic kernel is shown as a rectangle. The interface to the kernel can be under-
stood as an API to all the resources that are accessed via the kernel, although in
a practical implementation an interrupt-like routine is used. A practical example of
such a system is Linux, where the kernel is in principle monolithic, but dedicated
modules are used for several rather independent tasks, like processor and cache
control, memory management, networking stacks, and device and I/O interfaces, to
name some examples.

Such a system is commonly implemented in terms of (procedural) interfaces
between resources. Unlike a user call to these operations discussed above – when
applicable in the first place – which leads to an interrupt, kernel code can usually
call different routines directly. In addition, as data structures are often shared, ade-
quate mechanisms must be used to ensure correctly implemented mutual exclusion.
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Figure 6.3 Monolithic resource-hosting kernel

Positive and negative aspects of this approach are the following. Addressing
different parts of the kernel using procedural interfaces can be implemented in
a performance-effective fashion as no context switching is required but all the
resources can be accessed directly. Then, the operating system can serve the requests
of programs faster, in particular when an operation that requires coordination in
several resources is needed. On the downside, without careful management, it is
possible to create a tangled code base in the kernel, where the different parts of
the system are very tightly coupled. In practice, an additional detail that seems to
complicate the design of a monolithic kernel is that it often seems practical to add
some more properties to it, since there are no explicit boundaries on what to include
in the kernel and what to leave out. Over an extended period of time, this can make
the kernel harder to manage.

6.1.3 Separating Resource Managers

Parallel partitioning of resource-management-related facilities of a mobile device
leads to a design where individual resources are managed by separate software
modules. These modules can then communicate with each other using messages,
leading to an architecture commonly referred to as message passing architecture
(Shaw and Garlan 1996).

The microkernel approach can be considered as a message passing system where
the operating system’s kernel is used as a message passing bus, similarly to the
approach of Oki et al. (1993), which introduced the idea in the context of distributed
systems. Then, following the scheme of distributed systems, different functions are
separated to different processes, and the messages used for communication with
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resources form the interface for accessing resources. The approach is illustrated
in Figure 6.4. Obviously, it is possible to hide actual messages using for instance
dynamically linked libraries that offer a procedural interface rather than messages,
whose practical use can be considered more complex.

One common implementation for this type of architecture is that all the modules
run in a process of their own. Inside a module, a thread is used to listen to messages.
Whenever a message is received, the thread executes a message-handling procedure,
which fundamentally is about event processing. While this design decision adds
flexibility to the system – new modules can be safely introduced, if they rely on
the use of new messages and in particular do not send messages that can affect
the behavior of already existing parts of the system – it also has its downsides.
The principal problem is that in many cases, communication needed for passing the
messages requires several context switches, if only one processor is available; first,
a process hosting the resource sends a message, then the kernel dispatches it to the
recipient(s), and finally the message is received by another process. In particular,
operations that require complex cooperation of several resources easily become
expensive to perform. Therefore, while a design where all resources are located in
different processes is beneficial for separating concerns at design level, in addition to
plain message passing other means of communication, such as shared memory, are
usually enabled, at least in some restricted form (Figure 6.5). A more sophisticated
design can be composed when some of the resources are run in different threads but
within the same process. Then, they automatically share the same memory space,
and there is no need for special operations for accessing shared memory.

Even if a monolithic design is used when considering the kernel, it is possible
to manage resources implemented with software using the principles of message
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passing architecture (Figure 6.6). For instance, a design can be used where message
passing architecture is used on top of the kernel and the benefits of message passing
architecture are gained only at the level of the application. Analogously to system
design discussed above, also at the level of application it is possible to encapsulate
properties associated with resources in one component.

When considering implementations of mobile device platforms, also message
passing based architectures have been used. Perhaps most notably Symbian OS
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builds on this type of system despite the considerable overhead introduced due to
inter-process communication.

6.1.4 Resource-Hosting Virtual Machine

One more approach is to introduce a separate software entity, a virtual machine to
host resources of the underlying platform. Virtual machines can be of several levels
of abstraction, ranging from low-level virtual machines that can be considered a
feature of the underlying hardware to complete interpreters that can offer sophisti-
cated services, and their features may vary accordingly. As a result, virtualization
can take place in different places of the system, in particular in between applications
and hardware and in between applications and infrastructural software (Smith and
Nair 2005). These approaches, referred to as system and process virtual machines,
are illustrated in Figure 6.7.

The benefits of using a virtual machine in this context are the expected ones.
Firstly, porting can be eased, and in fact it is possible to define a standard execution
environment, with well-defined, standardized interfaces, as defined by mobile Java.
Moreover, techniques such as dynamic compilation can also be used.

On the downside, performance loss commonly associated with virtual machines
is worsened in an environment that is constrained in terms of resources. Therefore,
many devices include native software to implement main routines. However, in
practice nothing forbids implementing a virtual machine based mobile device, where
the majority of routines would be implemented with translated (or interpreted)

TEAM LinG



156 Programming Mobile Devices

techniques, and in fact a number of such devices have been implemented, building
for instance on the use of Java.

6.2 Common Concerns

No matter which approach to handling local resources is selected, there are multiple
concerns to be taken into account. The approach taken in the following is to address
the concerns listed below in more detailed discussion.

6.2.1 Overview

There are several common concerns when considering resource use of a mobile
device. Many of them are derivatives of scarce hardware resources, but some of
them can be traced to the requirements of organizations developing mobile systems.
For instance, one can consider the following concerns:

• Extension and adaptation is needed for being able to reuse the same code base
in different devices and contexts whose hardware and software characteristics
and available resources may differ. For instance, some devices can use hardware-
supported graphics acceleration, whereas others use the main processor for this
task.

• Performance requires special attention, because in many cases mobile device
hardware is slower than workstation on the one hand, and, due to the generic
nature of mobile devices as application platforms, optimization for a single pur-
pose is harder than in a purely embedded setting on the other hand.

• Energy management is an issue that arises when mobile devices are used more
like computers and less like single-purpose devices; being active consumes more
memory.

• Internal resource management is needed for ensuring that the right resources are
available at the right time. Furthermore, it may be a necessity to introduce features
for handling hardware-specific properties. The issue is emphasized by the fact that
in many cases, resource management is always running in the background.

In the following, we discuss some implementation techniques for these concerns.

6.2.2 Extension and Adaptation

Probably the most well-established approach to extensions and adaptations is to
implement common parts in one component, and to isolate all variance to different
modules. Based on the ideology of software product lines (Bosch 2000; Clements
and Northrop 2002), the goal is to decompose a system into parts so that different
systems can be built using the same parts. Moreover, parts that have already been
implemented should not be wasted but they should be reused in other products
as well.
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In mobile devices, the most obvious source of resource-motivated adaptation for
mobile devices is the hardware that is used. There are screens of different sizes,
the amount of memory can be altered, the keyboard can be replaced with a touch
screen, and so forth. Less obvious but still related to hardware are smaller changes
that may be invisible to the user of the phone, but require changes in the software
implementation. An example of such an event is an upgrade of camera to another
whose resolution is the same, but whose implementation is upgraded by for instance
enabling more liberal control over power management. Furthermore, when using a
common operating system, hardware or device manufacturers may need to adapt
the operating system to the specifics of the hardware.

In addition to hardware-level variation, also features implemented with software
may vary. For instance, market segmentation and targeting of mobile devices to
different types of users can result in a situation where a number of features are
removed (or replaced with some other features). While this is not a resource in the
strict sense, similar techniques can be applied.

A commonly used technique that lends itself to extension and adaptation is the
use of plugin components, as already discussed in Chapter 4. In the context of
resources and their management, one can use plugins for the specialization of the
system to fit a certain environment. When comparing device drivers and plugins,
device drivers are a considerably lower-level technique, whereas plugin components
can be used for any implementation. In some cases plugin components can be
extended, specialized or adapted with further plugins, or plugin wrappers can be
used as adapters for different types of resources. The downside of using plugins is
that their instantiation impairs performance. However, this need not be a problem,
as plugins can be specialized for a particular piece of hardware that will be used in
the target device.

Another way to perform extension and adaptation is to use aspect-oriented soft-
ware development, where new types of facilities are offered with which it is
possible to localize types of things that commonly need to be tangled in code
(Filman et al. 2005). For instance, logging is a commonly used example, but also
other types of features that need consideration in several modules can benefit from
aspect-orientation. In the scope of mobile devices, probably the most prominent
implementation approaches are AspectC++ (Spinczyk et al. 2002) and AspectJ
(Miles 2004), which extend C++ and Java with an option to weave aspects, i.e.,
pieces of code that know where they belong in the code, into so-called pointcuts
that for example refer to method calls of a certain type, to completed C++ and
Java programs. Because aspects essentially enable an approach where a baseline
implementation is given with standard C++ or Java and additional features are
added with aspects, it is tempting to first focus on the application behavior in the
baseline. Then, additional concerns, such as creating different variants or including
energy management, following the spirit of Sadjadi et al. (2002), or even generic
resource management features, can be implemented with aspects on top of the
baseline implementation. As the result, the baseline implementation would not be
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polluted with additional concerns, and the concerns would be clearly modularized.
On the downside, an experiment on using AspectC++ as a tool for implementing
variance has shown that in addition to tool chain problems in the interoperability of
Symbian compilers and AspectC++, there are also problems with memory usage;
in the experiment the size of a DLL almost doubled, which can be considered
unacceptable for large-scale use in the mobile setting (Pesonen et al. 2006).

In addition, the structure of an application is an important source of adaptability
and extension. Being able to separate unrelated concerns to different modules has
been the goal of the Model-View-Controller pattern already introduced in Chapter 3.
Separating the application logic to the model enables its reuse in different settings.
Views, however, can be reused only if the properties of the different displays are
relatively similar, and controllers only if the accessible controls are the same. Obvi-
ously, adding a software layer that manages this can be used, which adds complexity
to software but eases reuse.

Finally, an additional issue is the freedom of selecting the desired features at
the right time. For instance, one can consider conditional compilation, loading of
dynamic libraries, and run-time adaptation as different alternatives. Obviously, the
later the selection is, the more prepared the system must be to host the different
features.

6.2.3 Performance

Resources are not always offering independent services to applications, but they
may cooperate to jointly provide a more complex service. For instance, download-
ing a video stream from a file or network requires that several subsystems cooperate
in an optimized fashion; first, radio hardware access is commonly implemented in
a driver, then some protocol can be used for mapping the low-level data to a form
that can be understood by applications, and finally an application is responsible
for displaying the data. Moreover, several hardware resources may be used in the
process to accelerate image processing or to control the transmission. How these
subsystems then communicate becomes an issue, which is restricted by memory
protection and physical implementation. Passing the data as such from one pro-
cess to another can require extensive copying, which in turn can downgrade the
performance. On the other hand, using shared memory that can be accessed by all
subsystems can result in improved performance, but may be more error prone. In
general, however, sharing memory rather than copying data several times can be
considered a better option. Therefore, passing a reference rather than passing a new
copy should be considered first, as this saves memory as well as reducing copying.

In addition, the different hardware facilities should be benefited from in full.
This requires careful partitioning between the different processors, and must often
be performed in application- and device-specific fashion, because the hardware
configuration between different devices can vary considerably. Then, some devices
may use software emulation for some features that others execute using a hardware
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accelerator. Finding a combination of design decisions that satisfy performance
requirements in all different device configurations can be hard or even impossible.
Again, iterative development can be used to allow prototyping, which can help in
finding the worst performance bottlenecks in an early phase of the development.

A further topic regarding performance is that it is common that a device-specific
implementation can be composed in a more efficient fashion than a generic one
that can be adopted to different systems. However, the obvious price is that the
implementation is restricted to a certain hosting device only.

Finally, in cases where there is no way to perform all the required tasks, a quality
of service mechanism can be introduced. Then, even if the device is overloaded, the
most important tasks can still be executed. Moreover, one should design applications
so that failures are recovered from, and that applications can still continue in a
degenerated form, following the guidelines of Noble and Weir (2001). For instance,
if it is impossible to load a specific ring tone due to delays in file access for instance,
the default ring tone is played.

6.2.4 Energy Management

Energy management is a common concern in a mobile device. While in the sim-
plest case optimization can be considered as selecting the instruction sequence
that consumes the least amount of energy, the gains are often minimal. Firstly,
finding the right tricks for saving energy is platform specific. Secondly, even if
an energy saving pattern is identified, applying it in practice can result in poorer
results when considering energy consumption due to optimization, as pointed out
by Surakka et al. (2005) and Tiwari et al. (1994), since compilers tend to optimize
certain types of routines better than some others. For instance, even if it would be
more memory efficient to use indices where a maximum number of bits is set, code
generation can be so much better with indices starting from 0 that the energy saving
does not pay off.

However, and often also more importantly, software plays an important role for
managing other hardware elements than the processor. The ability to shut down
and reinitialize pieces of hardware can then be used to manage energy consump-
tion from the perspective of the whole device. In the simplest and most commonly
used form, hardware is managed with timeouts. When a certain amount of time has
passed, and a piece of hardware is not needed, it is shut down. Then, when the hard-
ware is needed, it is restarted. As shutting down and restarting a piece of hardware
takes more energy than just maintaining a piece of hardware active, the number of
unnecessary shutdowns should be minimized without keeping the hardware active
for too long. In practice, this can often be achieved through iteration. While time-
outs seldom are an optimal solution for energy, they can often be considered as
a good enough alternative, because they enable the hiding of energy management
from higher-level applications. While applications’ role in energy management can
be considerable, timeouts, together with a rule of thumb that performance equals
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energy, are good rules of thumb at application level (Chakrapani et al. 2001; Seng
and Tullsen 2003).

In addition to the straightforward option to turn a piece of hardware on and
off, hardware can offer other, more elaborate, alternatives as well. For instance,
processors can allow dynamic voltage scaling, where the frequency of the hardware
can be tuned. Then, less energy can be used when there are fewer tasks to perform
by using lower frequency, and when more performance is needed, the frequency can
be raised at the cost of energy consumption. Another example is given by Pasricha
et al. (2004), where an approach is proposed where dynamic adaptation is applied
to background light to save energy. Furthermore, similar techniques can be applied
to memory, where lower voltage maintains memory functional, but higher voltage
is required for operations. Again, latency is associated with moving from lower
voltage to higher voltage, which restricts the area of applicability of the technique.

While energy management is one of the most fundamental differences when
comparing programming mobile devices to programming devices connected to fixed
energy, for an application developer its role may be difficult to grasp. In fact, in
many cases of applications, especially ones that are run for a short period of time
and then shut down, one can neglect energy consumption, because the application
is run only for a short period of time in any case. However, for the developers
of low-level software, device drivers, and platform features, the issue is of crucial
importance. Moreover, even with applications, one should rather allow turning the
application off permanently when possible than to let it constantly occupy memory
and use kernel resources.

6.2.5 Internal Resource Management

Managing resources consumes other resources. In particular, resource-related soft-
ware requires memory to run in, and consume memory for storing the variables. As
with all software, all the memory that is reserved remains under the control of the
programs being executed or deallocated. For resource-related software, the issue
is even more crucial than when implementing applications, because applications
are usually shut down at least occasionally, whereas resource management remains
active.

A common concern that must be considered when using any local resource is
to determine whether or not a resource requires startup-time handling, ‘Conve-
nient time’ handling, where the system determines when to activate a resource, or
fully application-dependent handling, when the application has been activated. The
approaches have different advantages and drawbacks.

• Startup. A piece of software that is continuously running consumes resources all
the time, but when a resource whose management is based on this strategy is
needed, the access is fast because no software startup is necessary. For instance,
one could assume that a mobile device should constantly be ready for establishing
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an emergency call, so it may be advisable to reserve some critical resources
beforehand. Another example of a task that is usually initialized at startup is the
lowest-priority (or background) thread that is used for housekeeping and statistics.
When the thread is scheduled for execution frequently, one knows that there are
few real tasks to perform. In contrast, when the task is scheduled to execution
seldom, the system is busy. It is also possible to allocate also other tasks to the
thread, associated for instance with the management of other tasks or resource
managers.

• Convenient time management. A resource that is handled by a convenient time
management scheme can be activated by a timer, for instance. The approach is
applicable in cases where one can make a prediction on how the user is going to
behave. For instance, if the user decides to send an MMS, it may be applicable
to consider if for instance the camera interface should be activated, just in case
the user wants to take a picture. Similarly, even if the phone is switched off, it
may be possible to start some software when it is plugged to electricity for the
first time, thus making the first boot as fast as possible.

• Run-time management. Managing resources only when necessary more or less
makes them application-specific, although they can be shared by several applica-
tions and offer their services in a centralized fashion. As a result, only resources
that are necessarily needed are consumed. The cost of this approach is that in
some cases the system can appear slow, when resources are handled during the
initialization sequence of an application. On the other hand, it is usually enough
to let the applications take care of managing the resources.

Sometimes it is necessary to make details of hardware visible in the interface
used for accessing it. For instance, in Symbian OS there are two different types
of operations for writing data to disk. One is such that the operation is considered
completed when the data has been copied from the saving application’s memory
space to the memory space of the component that manages the disk, and the com-
ponent is then responsible for writing the data to the disk; the other considers the
disk write completed only when the data has been physically stored on the disk.
As a result, the operation appears faster for the user in the first case, whereas the
second alternative should be considered when the application wishes to ensure that
the data is saved.

6.3 MIDP Java

From the viewpoint of a midlet and MIDP Java infrastructure, the hosting oper-
ating system appears as a monolithic service-offering kernel, no matter how it is
really implemented. It offers all the services needed by Java, and cannot be directly
influenced by it in any means apart from the interfaces.

In the following, we introduce the main principles of implementing a program-
ming environment using such a strategy as the design guideline.
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Figure 6.8 Access to resources from a MIDP Java application

6.3.1 Basic Elements

The basic elements of the MIDP Java infrastructure include the different interfaces
that are offered for accessing resources of the device. From the perspective of the
system, however, the environment acts as a single application, which has some
predefined standard interfaces that can be used to access the resources of the device
(Figure 6.8). In the following, we address the different types of resources that have
been defined.

Interfaces to Resources

Access to resources in MIDP Java is based on interfaces that can be ported to
different environments. Standards are defined using the Java Community Process
(JCP), which enables any interested party to participate in the standardization pro-
cess. Individual standards are referred to as JSRs (Java Standardization Request),
which have been used to define also configurations and profiles mentioned earlier
(Table 6.1). As an example MIDP v. 1.0 is JSR 37, defining:

• midlet application model,
• user interface libraries to access to the screen using simple graphical primitives,
• networking facilities for accessing external resources using HTTP,
• ability to use persistent memory for storing data using RMS (Record Management

System), a simple record-based approach to storing data,
• timer support,
• system properties that will be discussed in the following,
• resource support for accessing files stored in the application’s JAR file.
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Table 6.1 Additional standardized resource-related facilities

JSR Purpose

JSR 46 Foundation Profile
JSR 66 RMI Optional Package
JSR 75 PDA Optional Packages
JSR 80 USB API
JSR 82 Java APIs for Bluetooth
JSR 135 Mobile Media API
JSR 169 JDBC Optional Package for CDC/Foundation Profile
JSR 172 J2ME Web Services
JSR 177 Security and Trust Services API
JSR 179 Location API
JSR 180 SIP API
JSR 184 3D Graphics API
JSR 185 Java Technology for Wireless Industry
JSR 205 Wireless Messaging API 2.0
JSR 209 Advanced Graphics and User Interface Optional Package
JSR 226 Scalable Vector Graphics API
JSR 229 Payment API
JSR 230 Data Sync API
JSR 239 Java Binding for the OpenGL ES API
JSR 253 Mobile Telephony API
JSR 256 Mobile Sensor API
JSR 257 Contactless Communication API
JSR 258 Mobile User Interface Customization API
JSR 259 Ad Hoc Networking API
JSR 272 Mobile Broadcast Service API for Handheld Terminals
JSR 278 Resource Management API for Java ME
JSR 279 Service Connection API for Java ME
JSR 280 XML API for Java ME
JSR 281 IMS Services API

Similarly, MIDP v. 2.0 is JSR 118, which further introduces:

• improved user interface facilities that still remain compatible with v. 1.0,
• improved connectivity including HTTPS, datagrams, sockets, server sockets, and

serial port,
• multimedia and gaming facilities including audio, tiled layers, and sprites,
• network push, i.e., opportunity to register midlets for activation when a device

receives information from the server,
• improved security features,
• over-the-air provisioning (OTA).
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In addition, both standards contain optional packages that can be included in an
implementation, but this is not a necessity.

In addition to standard interfaces, it is possible for a device manufacturer to add
new interfaces to enable new types of applications. Such interfaces are obviously
a portability risk, as when the standard matures and extends, a standard solution
could be implemented for the interface.

Interfaces to System Properties

In addition to the resources of the device, applications can get access to resource
files using the special getResourceAsStream method. This allows applications
to access resource files from their own context.

Also system properties (java.lang.System.GetProperty) can be studied.
Available options include the following:

• microedition.platform returns the name of the device,
• microedition.encoding returns the encoding of characters,
• microedition.configuration returns the configuration and its version,
• microedition.profiles returns the profile and its version,
• microedition.locale returns the language and the country.

Another important aspect that has been introduced is the ability to register Java
applications to listen to external events. The newer MIDP standard enables network-
initiated midlets, which can be used for creating applications that are not dependent
on user activity. This enables more sophisticated application.

To summarize, a clean and standardized software infrastructure has been created
as a result of the above approach. However, there are some risks related to the
different interfaces in different versions of standards as well as device manufacturer
specific interfaces. Still, in principle the same applications can be run in different
devices unaltered, as standard interfaces are required. However, in practice some
problems have been encountered. We will address this issue in the following.

6.3.2 Compatibility between Different Devices

The fact that implementations are based on common standards has not cured the
problem of variance in full. A number of features of applications may vary from one
device to another. For instance the following facilities may be different in different
devices:

• Amount of memory. Different devices may contain different amounts of memory,
and they may give different amounts of memory for Java applications even if the
actual device has more memory available.

• Available interfaces. Even if interfaces are standardized, older devices may in-
clude old proprietary implementations or lack interfaces completely. Moreover,
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even if a certain resource is in principle available in a device’s hardware, it may
not be available for Java applications.

• Implementation differences. The same interface may have semantically varying
implementations in different devices even if all of them claim to satisfy the
standard.

• Size and layout of screen. Different purposes of devices result in different designs.
• Keyboard layout. Again, the purpose of the device can lead to different solu-

tions. Moreover, facilities like a touch screen can be offered, which can result in
different application design.

• Standards. Different versions of standards can result in compatibility problems.

A practical approach is to give developers some different device types, and have
the first working version to run on all of them in a bearable fashion. Obviously,
choosing these models such that their penetration is or is expected to be large can
be considered desirable for practical reasons. An additional criterion for selection
is that one should consider phones with different number and amounts of resources.
For instance, using a very restricted phone in the beginning of the development
can guide the developer to really consider resource consumption. A risk is that the
resources of the low-end devices are really inadequate. For instance, if file access
has physical restrictions that always imply a certain delay, it is impossible to fix
this with software. However, another type of design might still be applicable, where
using the disk is for instance hidden from the user.

Another aspect that should be considered is that MIDP Java applications are not
in control of their own executions, but can be taken away even from execution state.
As different devices may behave differently in some situations, this is yet another
source of potential incompatibilities.

6.4 Symbian OS

As already mentioned above, the microkernel approach is used in the Symbian envi-
ronment. This has resulted in the definition of special software components, whose
purpose is to manage different types of resources. As is common in microkernel
approaches, such resource managers are referred to as servers.

6.4.1 Servers as a Mechanism of Resource Management

In Symbian OS, specialized components called servers are used as the main elements
of resource management. Every resource that the system has is encapsulated into a
server, which is responsible for managing the resource. When the resource is used,
the client first contacts the server, and establishes a session with the server. After
establishing the session, the client can use resources and services offered by the
server. Also error management is incorporated in the scheme. If a server is killed,
error messages are given to the clients, and if a client dies, the server should be
able to release allocated resources.
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Table 6.2 Some Symbian servers and their responsibilities

Server Purpose

File Server Implements access to files.
Window Server Implements Symbian OS’s graphical

user interface.
Database Server Contains data that is shared by

multiple applications.
Comms Server Enables the use of serial port for different

purposes.
Telephony Server Implements telephony-related services for

applications.
Messaging Server Used to manage all message-based

communication.
Camera Server Access to camera and associated

hardware.
Socket Server Manages communications sockets and

connections.
CONE Server Control environment which is run in all

applications.
Media Server Enables audio and multimedia control.
Font and bitmap server Manages all fonts and bitmaps.

In addition to plain hardware resource management, the use of servers is extended
to other resources. For instance, some services of the Symbian kernel have been
implemented in a server referred to as kernel server.1 The server includes two special
threads. One is kernel server thread, which is responsible for executing kernel
functions. The other is null thread, which has the lowest priority, and therefore can
be used for managing the processor’s power consumption. This type of solution is
common in many environments, as the lowest priority thread can easily perform
housekeeping activities as well as measure the utilization rate of the device. Some
sample servers have been listed in Table 6.2.

Naturally, servers can act as clients of other servers. This enables a layered
architecture, where more primitive services of low-level servers are used by more
abstract servers. A drawback of this approach is that there is a considerable overhead
if servers communicate extensively. The reason is the underlying message dispatch-
ing architecture, where the kernel acts as the communication bus, and servers only
communicate via it. As a solution, mechanisms have been offered for moving a
block of memory from the memory space of one server to the memory space
of another. Furthermore, sometimes servers run inside the same process, which

1 The current Symbian OS Kernel and its main properties have been introduced in detail from a programming
perspective by Sales (2005).
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allows them to transmit data from one to another more liberally. For instance,
communications-related servers have been implemented in such a fashion.

Even if servers are the prime mechanism for resource management, there are
also other reasons to use servers instead of applications. In principle, if one wants
to implement a subsystem that is being executed disregarding the execution of an
application, a server must be implemented for such a purpose. In order to reduce the
number of servers, different mechanisms have been implemented, which enable an
external event, for instance an incoming SMS or WAP push message, to activate an
application using so-called notifiers or publish-subscribe technique. The former is
a Symbian OS standard mechanism to provide a user interface for a client thread;
the latter is a technique introduced in Symbian v.9.0 that is based on so-called
properties that correspond to system-wide variables, publishers being threads that
define, set, and update properties, and subscribers threads that retrieve the values of
properties and can also listen to changes in properties and react to them (Shackman
2005b).

Servers can be categorized in accordance to their life span. This leads to the
following categories.

1. Server is initiated when the system is booted, and it runs until the system is shut
down. This allows the system to perform operations disregarding the application.

2. Server is started when an application is run for the first time. However, when the
application terminates, the server remains active. This enables systems where an
application is used to activate some features in the system.

3. Server is started when an application is activated, and shut down when the
activation terminates. This results in servers whose only intention is to offer
services to certain types of applications. In some cases, implementation could be
based on dynamically linked libraries as well, but the server approach is used
for convenience.

4. Server is started when an application needs it. When serving is over, the server
shuts itself down.

6.4.2 Implementing Servers

Server implementation is based on an active object that receives all the messages
sent to the server. A class diagram depicting this is given in Figure 6.9.2 As a
result, each access to a resource can be considered as an event, and the natural
event processing mechanism in Symbian OS is the concept of active objects.

However, unlike with active objects in general, servers are usually located in a
process of their own. Their clients communicate with them with messages
(RMessage). Messages are based on 32-bit-long identifiers, and in addition to the
identifier they carry 4 parameters, each of which is 32 bits. Another important

2 Exact classes used in the implementation vary slightly depending on Symbian OS version.
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Figure 6.9 Active objects inside servers

concept is a session, which couples clients and servers. To a client, a session to a
server is visible via RSessionBase, and to the server a session with a client is
implemented in class CSession.

As generating messages in a client program can be tedious and error-prone it is
common that an interface is implemented, which allows client programs to access a
server via a DLL rather than the actual server (Figure 6.10). That eases the design
task of the application developer, because an interface that is easier to use can be
offered for the programmer. This of course can also be problematic because it is not
straightforward to determine how much communication is caused by the operation.

Let us next consider server implementation assuming that a server was imple-
mented that would manage the selection of the next question and answer in the
sample Symbian application given in Chapter 3. The following code could be used,
assuming that the client-side session was implemented in class RQASession:

EXPORT_C TInt RQASession::GetQuestionId()
{
const TAny * p[KMaxMessageArguments];
return SendReceive(EQuestionRequestCode, p);
}

EXPORT_C TInt RQASession::GetAnswerId()
{
const TAny * p[KMaxMessageArguments];
return SendReceive(EAnswerRequestCode, p);
}
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Figure 6.10 Wrapping server interface with a DLL

In every session, an operation called ServiceL is introduced, which acts as
the counterpart of RunL in the active object framework. In ServiceL of a session
(CQASession in the sample program) running in the server (CQAServer), a switch-
case statement would then be given that would further call the actual operations.
Code also exemplifies the use of parameters. Internally, this parameter passing will
be implemented in terms of the normal inter-thread communication mechanism. In
this particular case, assuming that only the above operations would be used, the
following code could be given:

void CQASession::ServiceL(const RMessage & aMessage)
{
switch (aMessage.Function())

{
case EQuestionRequestCode:

GetQuestionId(aMessage);
break;

case EAnswerRequestCode:
GetAnswerId(aMessage);
break;

default:
_LIT(KPanic, "QAServer");
aMessage.Panic(KPanic, KErrNotSupported);

}
}

The actual message handling is then implemented in methods GetQuestionId
and GetAnswerId, which could be given in the following fashion. In the listing,
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class TPckgC is a thin, type-safe template class derived from TPtrC that is tem-
plated on the type to be packaged (Stitchbury 2004):

void CQASession::GetQuestionId(const RMessage & aMessage)
{
iQuestion = (++iQuestion) % KQuestionCount;
// Wrap integer to the message format.
TPckgC <TInt> valueDes(iQuestion);
aMessage.WriteL(aMessage.Ptr0(), valueDes);
aMessage.Complete(KErrNone);
}

void CQASession::GetAnswerId(const RMessage & aMessage)
{
iAnswer = (++iAnswer) % KAnswerCount;
TPckgC <TInt> valueDes(iAnswer);
aMessage.WriteL(aMessage.Ptr0(), valueDes);
aMessage.Complete(KErrNone);
}

The result of this approach is that resources are visible via method calls, and from
the programmer’s perspective it appears similar to programming using a monolithic
kernel (Figure 6.11). However, the cost of resource access can be more expensive,
since additional context switches may take place.

Additional consideration can be given for establishing a connection to open a
session to the server and for closing the connection (named as CreateSession,
Open, Connect; TerminateSession,Close for example). For instance, it may

Message dispatching kernel

Resource 1

Resource 2

Resource 3

Application 1 Application 2

DLL DLL DLLResource access API

Figure 6.11 DLLs as an interface to resources in Symbian kernel
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be necessary to introduce some logic to determine whether or not the server is
already running. In addition, if a complex startup procedure is a necessity, where
for instance some hardware resource is initiated, it is possible that version-specific
variations as well as differences in emulators and devices imply difficulties. For
instance, the sample server given by Stitchbury (2004) contains code that is different
depending on the used environment due to the differences in threading models in
the emulator and the actual device. Further complexity is added to the scheme when
addressing the use of services, whose execution is preferably asynchronous. Then,
support for asynchronous behaviors is also required of the client, implying that an
active object is implemented to handle incoming responses, for instance.

Considering servers as event handlers, which active objects fundamentally are,
leads to a message passing architecture where the kernel acts as the message dis-
patcher. Figure 6.12 illustrates the use of messages, and the role of the client of the
server, the server itself, and the kernel that manages their connection (Stitchbury
2004).

6.4.3 Adapting Servers to Hardware

Similarly to other parts of Symbian OS needing adaptation, also hardware adaptation
is managed with plugin components. As an example, let us consider perhaps the
most important types of plugins related to communication hardware. In this domain,
the different plugins are referred to as communication subsystems (CSY), telephony

User side Kernel side

RSessionBase DSession

CSharableSession

CSession

CServer RServer DServer

Client Process

Server Process

Figure 6.12 Role of kernel in Symbian client–server framework
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subsystems (TSY), protocol modules (PRT), and message type modules (MTM),
used for the following purposes.

1. CSY modules are used for specializing communications-related aspects to hard-
ware and the used protocols. A CSY module communicates directly with a
physical device driver. A CSY module can use other CSYs. For instance, the
IrDA CSY module that implements the IrCOMM interface to infrared (IR) phys-
ical device driver also uses the serial device ECUART CSY module.

2. TSY modules are the type of plugins that are used for adapting to different types
of telephony hardware.

3. PRT modules are the central modules used in protocol implementation. When a
certain type of protocol is needed a server creates an instance of a suitable PRT
module. Examples of PRT modules include TCPIP.PRT and BT.PRT.

4. MTM modules are used for handling different types of messages using the same
framework.

Figure 6.13 illustrates how these modules are used in the implementation stacks
of Bluetooth and TCP/IP with point-to-point protocol (PPP) (Simpson 1996) facil-
ities. In Bluetooth, only one module (BT.PRT) is used, whereas TCP/IP with PPP
requires using a number of modules of different type (TCP.PRT, HAYES.TSY, and
ECUART.CSY). Further complexity is added when using wireless application proto-
col (WAP), where multiple PRT modules are used (WAPPROT.PRT, SMSPROT.PRT)
(Jipping 2002).

BT.PRT

device drivers

TCP.PRT

device drivers

Bluetooth TCP/IP with PPP

ECUART.CSY

HAYES.TSY

Figure 6.13 Bluetooth and TCP/IP with PPP modules in Symbian
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Similar discussion can be given to multimedia codec adapters and cameras, as well
as a number of other features where abstract functions are provided to applications,
but low-level implementations vary. Furthermore, device drivers of Symbian OS
are commonly implemented using logical and physical drivers, as already discussed.
The former includes the common functions of the driver, and the latter is for hiding
the details of the particular hardware implementation. A common design goal is
to implement only a minimal physical driver, and keep it as thin as possible. In
contrast, the logical driver then hosts the majority of functions that are assumed
to be necessary in all different hardware configurations. For obvious reasons, this
contributes to an increased compatibility between devices. Still, problems similar to
those associated with Java can be encountered when porting Symbian applications
from one device to another.

6.4.4 Problems with Servers

As already discussed, introducing a message passing architecture in a device that
has restricted resources can be harmful to performance. In the case of Symbian
servers, some optimizations have been introduced, where a number of servers run
inside the same process to avoid superfluous copying of data in communication
stacks for instance.

Another detail that can be problematic is the required startup sequence. As
the behavior of some servers is intermixed, their startup order must be carefully
designed. Moreover, when performing the boot, all servers are initializing them-
selves, and it is possible that they unnecessarily await acknowledgments from each
other’s successful startup, which in turn again results in delays. Optimally, a design
is introduced where the startup sequence can be centrally controlled so that it can
be changed with relative ease.

When a server runs into an internal problem, it may have a hard time recovering.
The error may already have been propagated to other parts of the system and even
if the server that first ran into the error could boot itself, others may still be using
erroneous data. Failures in booting the server in turn can lead to unavailability of
some of the hardware characteristics of the device, as in many cases each new
device needs a controlling server.

Finally, one problem is that Symbian OS has been evolving rapidly. Therefore,
changes in different parts of the system have sometimes led to restructuring of
server-related features. This results in differences in the code base that can be used
in them, but is next to unavoidable.

6.5 Summary

• Resource management can – and usually should – be encapsulated in special-
ized modules for eased design and maintenance. While this consumes resources,
otherwise it is impossible to have any control over them.
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• Several competing concerns to be taken into account when designing resource
management:

– Extensions and adaptations, which can be applied to low-level software, mid-
dleware, and executables,

– Performance,
– Energy consumption,
– Internal resource management.

• Balance between offering possibilities for optimization and encapsulation is an
essential design goal.

• Microkernel and monolithic operating system design are both possible. Moreover,
they may in fact appear similar to the application developer, when resources are
accessed via APIs in both forms in any case. However, their non-functional
characteristics are different.

– Microkernel introduces some overhead, but the parts of the system can be
replaced at least relatively easily. The design of concurrent executions is eased,
as the different executions reside in different components.

– Monolithic design can become a burden to maintain in the long run, but the
intimate connection of the different elements of the system usually results in
improved performance. The design of concurrent executions can be difficult,
as only relatively primitive facilities may be available. Moreover, debugging
can also be difficult.

• As resource manager software is constantly active, internal resource handling in
such systems should be carefully designed.

• Lowest-priority thread is commonly used for housekeeping and resource man-
agement activities.

• MIDP Java relies on the use of standard interfaces when accessing the resources.
Actual implementation of the operations can be vendor specific, and the under-
lying operating system properties are hidden from the Java developer.

• Symbian OS relies on the use of message-passing architecture, where resources
are encapsulated in servers.

• Porting to mobile devices is commonly made difficult due to different interfaces
that are available to different resources. Moreover, implementations of standard
interfaces sometimes vary. Furthermore, even if a certain hardware interface does
exist (e.g. Bluetooth), the associated software interface may not be available for
a programmer.

6.6 Exercises

1. As already discussed, using a message-passing architecture for resources often
results in lack of performance. What kinds of benefits does it offer for the
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developer in exchange, when compared to a monolithic design? Consider at
least the following aspects:

(a) Memory consumption.
(b) Debugging.
(c) Maintenance.

2. What kind of a design is needed for implementing MIDP Java interfaces on
top of Symbian server-based resource management strategy?

3. What would be required for implementing C/C++ standard interfaces on top of
Symbian OS server managed resources?

4. What benefits would be offered by a system where all resources were included
in the operating system kernel instead of being distributed to different resource
managers?

5. Consider a license manager software system that contains a database of licenses
and methods of payment for them. Each license-capable application can call
a special method CheckLicence(PaymentType) which checks whether the
license is available, and if not, the license manager purchases the license. What
parts of the system should be implemented with plugin techniques? What would
the different plugins implement?

6. In what situations would it make sense to offer several different interfaces to
the same resource?

7. What types of features could be implemented with aspect-oriented techniques in
mobile devices, assuming that the restrictions on memory usage were relaxed?

8. Consider using a DLL or a server that only runs when the application is active
in a Symbian application. What differences exist? How would the differences
be visible to the application developer? In what situations should the server
solution be used?

9. Convert the sample Symbian model given in Chapter 4 to a server. What type
of a server (always on, turned on only when needed, ...) would be a suitable
implementation? What could be gained (or lost) if some other type of server
implementation was used? How much is the execution time of the application
affected?
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7
Networking

7.1 Introduction

The fundamental purpose of a mobile device is to liberate users from restrictions
of place. Therefore, it is only natural that the connection to a fixed network is
gaining more and more interest in the domain of applications, and the role of a
mobile device as an execution environment for local applications only is becoming
less attractive. Furthermore, assuming that it is the contents and data that users are
consuming, it is obvious that they should be loaded over the network in some form
or another, as communication is the main purpose of many mobile devices.

An obvious consequence of the above is that one can propose the use of mobile
devices as extensions of any networking system. For instance Pernici (2006) pro-
poses a number of aspects that enable, allow, and support such extensions. More-
over, communications facilities associated with mobile techniques, discussed by
Schiller (2003), for instance, have gained interest. In the scope of this chapter,
however, we place the focus on the internals of a mobile device, and overlook
the design of services that may be located in the network but can be specialized or
extended for mobile devices. Therefore, while addressing the properties of networks
and services, the viewpoint is that of an application developer for a mobile phone,
not that of a service provider or service developer. Another consequence of the
above is that in many ways, networking features appear as yet another resource that
is capable of communicating with the surroundings. For the issues related to dis-
tribution, the reader is referred to Andersson et al. (2006), Coulouris et al. (2001),
Mullender (1993), and Tanenbaum and van Steen (2002).

7.1.1 Basic Connectivity

When using mobile devices in a networking application, the limitations and prac-
ticalities commonly associated with the development of distributed systems and
Internet programming remain valid. For instance, the basic properties, such as open-
ness, bear similar importance in design, and the question is fundamentally to create

Programming Mobile Devices: An Introduction for Practitioners Tommi Mikkonen
 2007 John Wiley & Sons, Ltd
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a system of nodes that are able to communicate with each other using some media,
although in terms of resources, scalability, and at least partly transparency the situa-
tion changes. One can consider the possibility to use services of systems located on
the network as yet another layer of facilities, like memory, as hinted in Chapter 1.
While accessing data in this layer is more expensive in terms of time and actual
payments, computing and storing resources can be vastly increased; servers in the
network need not obey the restrictions applicable to software running in the mobile
device, but they can be connected to constant electricity and run large and sophisti-
cated software. As for transparency, it can be meaningful for the user to be able to
tell the difference between local and remote features for cost awareness and offline
working in an airplane, for instance.

An additional characteristic of the wireless domain, especially in connection with
cellular networks, is an additional piece of networking equipment that acts as a
bridge between the fixed and wireless networks, and uses bearers that are special-
ized to this kind of a setting. Such techniques have been used, for instance, in
a wireless extension of Corba called Wireless Corba (Black et al. 2001) and in
wireless application protocol (WAP) (WAP Forum, 2001), where a gateway imple-
ments the translation between the protocols used in the wireless domain and the
fixed Internet. In such a context, however, only lower level protocols usually vary,
not the protocols visible to the application. Therefore, no changes are implied to
the applications, apart from measures taken for other reasons, such as to hide the
slowness of the connection to the network.

7.1.2 Stateful and Stateless Systems

In a networking application, several architectural decisions can be taken. In many
cases the main driver of the decision is to define the boundary between the parts of
the system that run in the device and those that run in the server. While technical
restrictions obviously impose constraints on the selected implementation technique,
properties and functions of the application often force the selection of a certain
implementation technology.

Two different types of systems can be built with networking facilities depending
on whether or not stations of the system should remember previous events, or simply
always provide the operation in a similar fashion, assuming that all operations are
self-contained.

• Stateful systems preserve information related to their past operations and associ-
ated internal state. This allows the creation of series of related operations. Then,
in many implementations there is a global state that is distributed to all the sys-
tems needed for running the application. In practice, one can often consider the
existence of sessions as a state for an application.

• Stateless systems simply execute some routines generating output based on certain
input, disregarding what they have previously executed. Then, when running
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an application, there needs to be only one subsystem – or sometimes only the
user – that maintains the state of the application, and uses services offered by
stateless components.

With a state that is stored in the system, applications get more complex, because
their behavior may (and usually does) depend on the internal state. Following the
paradigm of conventional distributed systems where all participants are allowed to
have an internal state, one part of a system is then commonly run in users’ mobile
devices acting as clients, and the rest of the system is run in a server that can reside
in the fixed network. Then, the state of the application is constituted by the internal
states of multiple computers, some of which can be mobile devices, although the
state inside clients is usually minimal in comparison to the server. The role of the
server can be to enable centralized functions and associated state that cannot be
achieved when only the client is used.

Abstractions that are commonly used for implementing applications of this type
are based on some middleware system, such as Java’s Remote Method Interface
(RMI) (Sun Microsystems, 1997). Lately, also Web Services (Singh et al. 2004)
have gained interest in the scope of mobile systems, as the same services could
then be used with both mobile devices and the fixed Internet, assuming that the
services were designed to fit alternating screen sizes.

When restricting the discussion to cases where the state of the application can
be kept local or partitioned such that requests and reply messages over a stateless
protocol, such as HTTP, are a sufficient implementation mechanism, the functions
of the system can often be simplified to browsing in the mobile setting. While
seemingly impractical, the browser seems to have become an important technique
for implementing distributed applications. The reasons are that browsers have been
widely deployed also to mobile devices, and that they can be extended with plugins
that are allowed to execute downloaded programs. Furthermore, applications have
found their way to use browsers’ facilities for implementing at least a degenerated
form of statefulness.

One can consider two different alternatives for the execution environment. One
is to always run all programs in the server and to download only the result to a
mobile device, thus benefiting from improved resources of the server, and the other
is to first download the application to the mobile device in some packed format,
then run it, and only upload the result back to the server. The selection between
these is probably application-dependent, as the need for communications with the
user plays an important role. In some cases, it may even be practical to implement
an application-specific browser that uses protocols optimized for the purposes of
that particular application. For instance, the MUPE (Multi-User Publishing Envi-
ronment) platform relies on the use of dynamic mobile Java functionality and class
handling embedded in XML, as discussed by Suomela et al. (2004).

A downside of the browser-based approach is that due to long travel-through
times for request–reply pairs, it can take a long time to download something from
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the Web. The problem is worsened if several requests are to be made before anything
can be made visible to the user. An additional downside is that without the state
stored in the application, all communication must contain information about the
past actions if they are relevant for the behavior, which in turn increases network
load. Other implementations include the use of hidden fields that are loaded but
not displayed and cookies that are stored in client computers, but which may be
restricted in their size.

For obvious reasons, networking applications in mobile devices need some state
information. At the very least, they must be capable of learning whether or not
network connectivity is available. However, due to reasons related to loss of con-
nection in the wireless setting, for instance, incorporating too much state in a session
can lead to difficulties, especially if the session cannot be recovered later on if the
connection breaks. Another practical detail is that testing of stateful systems can
become more difficult, as in many cases both the behavior in the correct state as
well as in an illegal state should be addressed when validating the system.

7.1.3 Infrastructure Assisted or Ad-hoc Networking?

A particular feature affecting the architecture of a networking application is whether
it is based on a certain fixed and managed infrastructure, or a formation of inde-
pendent stations that form the network in an ad-hoc fashion. In principle, both can
be implemented on top of the connectivity described above. However, the more
one implements middleware in the form of wireless Corba, WAP, or mainstream
browsing facilities, for instance, the more likely it is that the application is necessar-
ily based on fixed infrastructure, whereas ad-hoc environment in contrast seems to
favor lighter infrastructure in the mobile setting, where mobile devices communicate
with each other using some low-range radio protocol, like Bluetooth, for instance.

With a fixed infrastructure, responsibility for certain actions can be allocated to
a certain network unit. Similarly, when a device enters an infrastructure network, it
often sends a message, which registers the device to the network. This eases issues
like who can access what, and information regarding the location of certain services.
From the application perspective, the application can often adapt an implementation
where either the device initiates all operations, as is the case with browsing, or the
device waits for the environment to perform some operation, for example sending a
message to the device. Moreover, the devices can often manage changes in the envi-
ronment themselves. For instance, it is common that devices themselves know how
to communicate with the network even when the home network cannot be accessed,
and the programmer seldom has to take this into account in the application. To sum-
marize, a lot of the facilities are built into the device, in particular when regarding
the infrastructure needed for communications, and the user can simply apply them.

In an ad-hoc network, responsibilities can be assumed on the fly as devices in an
ad-hoc network enter and leave the network uncontrollably. For obvious reasons,
locating a certain service, such as printing for instance, should be performed via
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some service discovery routine, similarly to all the other services one wishes to
receive. Moreover, one may also wish to offer services to others, which allows one
to create and provide custom services using the device. In general, one can consider
the following characteristics (Kortuem et al. 2002):

1. Networks are self-organizing in the sense that the topology of the network
changes constantly as nodes enter and leave the network, and move in it, thus
creating new connections.

2. Networks are decentralized; all nodes are equally important.
3. Networks are also highly dynamic because nodes may move frequently and

independently.

For devices that only benefit from services offered by other devices, the situa-
tion need not be different from using the infrastructure, apart from the fact that
preinstalled support may exist only for preplanned services, and custom services
may require their own custom client. However, if a device offers services to other
devices, there obviously must be some support for serving other devices.

7.2 Design Patterns for Networking Environment

In the following, we propose some commonly applicable ideas in the design of a
networking application in a mobile device. The goal is to address only the internals
of the device, and we will overlook the consequences of the designs to the hosting
infrastructure.

Use a networking wrapper. While programming environments commonly offer an
extensive set of interfaces for accessing the network, they have not been optimized
for any particular application. However, when composing a particular system, where
the network plays a specific role, a lot of the complexities of the interfaces are not
needed in the first place. For instance, defining a Bluetooth connection in general
requires a number of details to be negotiated and set, whereas applications mostly
use only a subset of these. Therefore, it is better to hide the rest of the details
behind the wrapper. Moreover, the wrapper can also be used for other purposes,
like enabling altering the used networking facilities. Using a wrapper will also
ease porting of the application to some other environment, as it separates platform-
specific parts from the application.

Consider treating networking features similarly to resources. As already discussed,
the facilities of the network can be considered yet another resource, which is an
extension to the use of wrapper discussed above. Therefore, at the level of software,
it is sometimes natural to implement a corresponding resource manager that helps
in working with the resource. For the parts that are more or less standard software
infrastructure, the manager can be provided by the networking infrastructure of
the mobile device, like Socket or Telephony Server in Symbian OS, but for more
abstract or specialized resources, an additional abstraction can bring increased value.
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Adding an interface to an application-dependent resource manager can make it
appear similar to infrastructure resource managers, with the same implementation-
level technical investment in the form of threads, for instance. This eases their
use, and can in fact lead to the creation of a new standard component that hides
some of the complexities of the standard interface that must offer all the options.
For instance, a device may contain a master resource controller that can be used
for canceling all the established communication connections when necessary. As
applications should in any case be implemented such that the loss of a connection
results in minimal harm, the fact that the user can actively cancel executions does
not cause additional risks.

Allocate a responsibility of networking operations to some particular execution
unit. A common case is that a networking system makes accesses to the network
while the user is using the device. In order to ease the design, a separate unit of
execution, usually a thread but also an active object in the Symbian environment
can be used, should be allocated for serving networking operations. This contributes
to advanced separation of concerns, as one unit of execution serves the user and the
other the network. Managing the mutual exclusion is then a task for the programmer.

When implementing a server, keep it separate from client. Especially when imple-
menting ad-hoc systems, it is common that mobile devices also host services. Then,
it is often beneficial to separate the server from the client for several reasons. First,
when using the application the local client does not get unfair advantage in games
if not desired. Second, tracing bugs will be eased when either the server or the
client is to be updated, if there is no need to study their merge as a separate case.
Moreover, different techniques can be used in the implementation. For instance,
the server may be implemented with Symbian C++ and clients using mobile Java.
Finally, it will be easier to implement different clients that will use the same server
if clients and servers are not intertwined. However, implementing a special interface
for local operations can be a practical necessity to reduce networking load. Still,
one can consider using only one interface but different plugins, one for remote and
one for local data.

Telecommunications features are commonly more restricted to some partic-
ular purpose, whereas data communications enables more freedom. In many
ways, telecommunications and data communications features reflect their origins.
Telecommunications features, such as establishing voice calls and delivering simple
messages using SMS and MMS messaging (Bodic, 2003; Mallick, 2003), can easily
be accomplished, but it is not always straightforward to build new applications on
top of them, as the service is already intended for a person. In contrast, in data
communications the user can compose a program that reads incoming messages
and responds accordingly relatively freely and in particular using whatever format
seems to be most convenient. Therefore, the latter seems to be more natural for
applications. However, telecommunications features can adopt a special role when
for example a conversational communication channel to the help desk of an appli-
cation is needed. For instance, for a company that wants to extend its information
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system to all the salespeople, the use of telephony-based messaging for communi-
cation seems to be a superfluously complex and expensive solution. Furthermore,
the existing information system is probably built around Web technologies, and
using the same infrastructure is only rational. Instead, for participating in different
kinds of voting organized in cooperation with a cellular operator that require send-
ing a premium-paid SMS, it is obvious that messaging is a necessity due to the
business model of the organizer. While principally a question of business models
and applications, there are some technical restrictions, however. Firstly, establish-
ing a communications channel for a computer-like connection requires some time,
whereas an SMS can be sent in the background without user interventions. Sec-
ondly, assuming that the networking end will be active, it is difficult to get users’
attention without a mechanism that would interrupt them. For instance, implement-
ing an email system that immediately notifies the user about an incoming email via
a mobile device either requires a messaging-based notification of an incoming email
via telecommunications that triggers the download using computer-like data con-
nection that is to be constructed separately for all emails, or keeping the connection
alive and polling the status, which in turn consumes battery.

Consider push versus pull. Push services are a commonly used term for services
that the network initiates in a mobile device. In contrast, pull services are those that
the mobile device itself initiates. Many of the services that have been implemented
in the Internet obey pull philosophy, and it has also become important in mobile
devices, where for instance a browser can be used to pull information from the
network. However, the traditional telecommunications services have been such that
it is the network that takes the initiative, and informs the user that there now is an
incoming call or text message. However, in many ways offering the network the
possibility to inform about certain events is a necessity for more elaborate mobile
applications.

Be prepared for loading times. As already discussed, mobile communications
are often considerably slower than corresponding fixed communications. In many
cases, this will be difficult to hide from the user. However, giving the feeling
of being in control to the user should be ensured to create practical networking
applications. Moreover, while technologies like Ajax, which builds on JavaScript,
XMLHttpRequest, which is a way to implement an asynchronous server call in the
Web environment, Cascading Style Sheets (CSS), and other Web technologies have
introduced facilities for more responsive Web development, the effects have been
implemented by downloading executable code like JavaScript from the network
to the browser, which then appears more interactive due to the downloaded code.
Therefore, they do not as such ease building more responsive applications, but may
in fact lead to extended download times. At very least, the application must some-
how indicate that the input has been detected, and that the request is being served.
Still, it can be argued that Web-based applications that run inside a browser are in
fact among the most versatile pieces of software that can be used in a mobile device,
although they may not have been intended for such use by the original designer.
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Consider proactiveness. In the Internet paradigm, communication usually takes
place in real time. There is no need to wait for a convenient time to perform certain
networking operations, except at the very lowest level when the limitations of
implementation techniques become visible. However, when using mobile devices,
the issue becomes more complicated. To begin with, there can be several options
for networking, of which some may not be usable in some locations. Then, it
may be possible to delay certain operations in a GPRS connected area until for
instance faster 3G network or cheaper and faster WLAN becomes available, at
least if the amount of data to be transmitted is large. Moreover, also other reasons
can be served. For instance, it may be much more energy efficient to transmit large
amounts of data when the radio connectivity is strong, and only the least possible
amount of energy is consumed. Unfortunately, not all applications can benefit from
the option to delay the execution of some operations. For instance, if the user is
accessing some data from the network that is urgently needed, performing the action
later is not an option. However, in some cases, for instance, delivery of news or
broadcasts as well as certain synchronization operations can be performed without
user invention as a background activity.

Adapt to the facilities of the device. Unfortunately, in many cases the options
offered by a mobile device are somewhat limited. Therefore, for practical application
development, a good starting point is to study the different design alternatives
offered by the platform, and select one of them as the basis of the system.

7.3 Problems with Networking Facilities and Implementations

A technical problem in networking with mobile devices result from equipment
needed for implementing the connectivity. Round-trip times are long in cases where
the cellular network is used as a bearer. First, the device must interact with cel-
lular equipment for equipment and user identification and access, then some other
piece of equipment provides the access to the Internet, where the actual services
usually reside. In connection with low bandwidth – O’Grady and O’Hare (2004)
suggest the theoretical and practical bandwidths listed in Table 7.1 for GPRS and
UMTS – and slow interaction, this results in relatively long response times. Addi-
tional challenges are introduced by the fact that the connection between a mobile
device and a system installed in the network may require re-routing as the device
moves in different networks.

Table 7.1 Throughput of GPRS and UMTS

Theoretical Practical

GPRS 115 kbps 30 kbps
UMTS 2 Mbps 300 kbps
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Another problem is constituted by the number of available techniques, deriving
from both data and telecommunications origins. There are at least four different
ways to communicate using messages: fax for sending paper documents as mes-
sages, short message service (SMS), which offers a primitive messaging service
originating from telecommunications, emailing system similar to that of the Inter-
net, and multimedia messaging service (MMS), which is a technique composed of
both telecommunications and data communications. There are two browsing stacks,
one for WAP browsers and the other for Internet browsing using hypertext transfer
protocol (HTTP). Furthermore, possible data communications media include data
calls, GPRS, WCDMA, and wireless LAN, of which the latter can be used for
similar purposes to Bluetooth and infrared communications, at least in some cases.
Sorting out the right technologies for an application, as well as technologies that are
available for a programmer in different types of devices, are a complicating factor.
In practice, it is therefore often advisable to use bearer-independent data communi-
cations whenever applicable, and require justification only when deciding for some
other choice. In fact, one can consider that a prime challenge related to networking
abstractions in mobile devices is how to integrate (or unify) the different facilities
into a comprehensive yet simple and usable component that could be used without
considering the details of different techniques in applications.

A further known shortcoming of communications techniques is that one cannot
implement a system where one device would be directly offering services to others
using a mobile operator’s network as the media, if the operator does not enable
distribution of the device’s IP address. However, even such applications can be
implemented with an additional server residing in the network that takes care of
addressing and routing.

Finally, the costs of the connection that is associated with using the operator
network can be considered a problem. In particular, if no information regarding the
cost of a service is available, it is difficult for a user to commit to using the service.

7.4 MIDP Java and Web Services
Web Services have become a common technology for networking applications. For
MIDP Java, the way in which Web Services are to be used has been specified in
JSR 172 (Ellis and Young, 2003). The specification only discusses the use of Web
Services on the client end, which enables mobile devices to interact with services
offered by the network, but not vice versa.

In this section, we give an overview on how Web Services are implemented
in mobile Java. The goal is not to go into details of the implementation but to
demonstrate the available facilities.

7.4.1 Web Services Overview

Web Services (e.g. Singh et al. 2004) form an infrastructure-based networking tech-
nique which has been gaining more and more foothold in the Internet (Figure 7.1).
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Figure 7.1 Using Web Services

Principally, the idea of the technique is to enable services that others can use in the
composition of even more complex services relying in practice on TCP/IP and HTTP
connectivity. While originally introduced for Internet-scale systems, Web Services
have been introduced for the mobile domain as well (Pashtan, 2005). Being in use
in many companies, the technology offers an option to compose services that can be
accessed from mobile devices as well. Moreover, the cost of bringing the facilities
to mobile devices is low, because the underlying implementation of the service can
be the same. However, applicability is not always straightforward, as in many cases
the goal is to perform machine-to-machine operations between systems of different
infrastructure, not human-to-machine service implementation, which would most
naturally be the case with mobile devices.

When designing a system relying on the use of Web Services using mobile phones,
there is no particular application model that should be obeyed. In fact, as Web
Services offer independent services to the application, technical issues like remote
object references that must be considered when using a distributed object model
become irrelevant, which simplifies the scheme. However, when using a service,
one party adopts the role of a client (service user) and the other the role of a
server (service provider). In practice, it is often a necessity to introduce some
concurrency in the design of the application to keep the application responsive
while Web Services are accessed over the network.

Finding Web Services is based on UDDI (Universal Description, Discovery and
Integration), which commonly defines a directory structure located in a registry
computer containing information on registered Web Services. In addition, other
protocols have been proposed for finding Web Services that also support the ad-hoc
environment. For instance, WSDD (Web Service Dynamic Discovery, or so-called
WS-Discovery) protocol has been introduced for discovering Web Services in a
dynamic network environment (Microsoft Corporation, 2005).
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Communication takes place using SOAP protocol, which enables communica-
tion at a relatively high level of abstraction. From the programming perspective,
a Web Service acts as a service, not as an object (or a collection of objects) that
could be instantiated, which should be taken into account in the design. How-
ever, this predominantly reflects requirements to the server side, not to the client,
as the situation is similar in the fixed Internet. Web Service specification does
not define any standard bearer for the technology. However, in practice, HTTP
is most commonly used due to its capability to travel through firewalls in the
Internet.

7.4.2 Using Web Services with Mobile Java

MIDP Java adaptation introduces tool support for implementing client applications
in accordance to the scheme illustrated in Figure 7.2 (Ellis and Young, 2003).
Elements of the figure are:

1. the application that runs in a mobile device,
2. a stub that is used for making calls to Web Services and that can be generated

automatically,
3. Service Provider Interface (SPI) that is used to enable the use of platform-

independent stub generators,
4. a local Web Service client, developed using the WSDL file of the service, which

will communicate with the server hosting the actual Web Service.

Local
Application

Stub

Service Provider 
Interface

Local Client

1

2

3

4

Network

Device

Remote
Services

Figure 7.2 Stub and service provider interface
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The operations that take place are the following:

1. A local application makes method calls to the stub.
2. The stub calls Web Services via the formally defined Service Provider Interface.
3. Service Provider Interface implementation uses the information received from

the stub to open a connection to the remote Web Service.
4. The remote computer performs the requested operation, and once the operation

is completed, the control returns to the local application.

Like most Java features, tool support for implementing Web Services in mobile
Java has been based on APIs, which in this particular case consist of optional
packages. The most important API packages and related tools are listed in the
following.

• Java API for XML processing (JAXP) offers support for XML parsing (Suttor
and Walsh, 2004). The parser is a non-validating parser that is intended to parse
incoming XML documents and make the included data available. Furthermore,
the parser is designed to parse an XML document as an input stream, rather than
as a document tree.

• Java API for XML-based RPC (JAX-RPC) is an implementation of Remote Pro-
cedure Call (RPC) technology (Chinnici, 2002). The version targeted for mobile
devices is a scaled-down version, and it is tailored to run in such a restricted
environment.

• Service Provider Interface (SPI) is intended to allow the implementation of gen-
erated stubs in a compatible fashion.

• Stub Generator. JAX-RPC includes a stub generator that can be used for gener-
ating a client-side proxy that can be called by an application to place calls to a
remote Web Service.

• Java Architecture for XML Binding (JAXB) offers a way to transfer an XML
document to a set of Java classes and interfaces based on the document’s XML
schema (Fialli and Vajjhala, 2006). This enables the use of XML facilities using
Java only.

• SOAP with Attachments API for Java (SAAJ) defines how to create and send
SOAP messages (Jayanti and Hadley, 2001).

• Java API for XML Registries (JAXR) provides an access to standard registries,
such as UDDI (Najmi, 2002). It contains operations for registering a service to a
registry as well as for discovering services from one.

The actual development of a Web Service and its clients is usually assisted by
supporting tools. For further discussion, the reader is referred to Maruyama et al.
(2002) and Singh et al. (2004), for instance, where details of the approach have
been discussed.
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7.5 Symbian OS and Bluetooth Facilities

In connection with Symbian OS, we will study the use of Bluetooth, a cable
replacement radio protocol for short-range communications. The Symbian environ-
ment offers sophisticated support for using Bluetooth, where a mobile device can
both offer and use services to and from other devices. Both cases will be addressed
in the discussion. Again, towards the end of the section, we will introduce also
other networking options of Symbian OS.

7.5.1 Bluetooth Introduction

Bluetooth is a bearer and low-level radio technology introduced for short-range
wireless communication, which started as a Bluetooth Special Interest Group, but
which is now adopted as IEEE Standard 802.15.1. Originally intended as a cable
replacement, several higher-level applications of the protocol have been proposed on
top of this simple infrastructure. Offering a wide range of devices that have already
been deployed, Bluetooth is a candidate for applications benefiting from ad-hoc
and proximity-based networking, such as mobile games or different services asso-
ciated with certain physical location. Frequency hopping is used to enable several
Bluetooth connections in the same spatial area.

Bluetooth services are divided into service classes, associated with a 128-bit
Universally Unique Identifier (UUID). which are a mechanism for ensuring com-
patibility between different types of devices. As an example, Table 7.2 lists some
commonly used service classes and associated UUID values. Each service class is
associated with a profile, which defines a selection of protocols and procedures that
the devices associated with the profile must implement. As an example, Generic
Access Profile (GAP) is the basis for all other profiles and defines how to establish
a baseband link between two devices, Generic Object Exchange Protocol (GOEP)
is used to transfer objects between two devices, Service Discovery Application Pro-
file (SDAP) describes how an application should use Bluetooth’s service discovery
protocol to discover services on a remote device, and Serial Port Profile defines how
virtual serial ports are created and how two devices are connected. In addition, each
service class defines a set of attribute definitions, which define a 16-bit identifier for
an attribute that can be advertised by a Bluetooth device. Some example attributes

Table 7.2 Some Bluetooth service classes

Service class UUID

Serial port 0x1101
Dialup networking 0x1103
OBEX file transfer 0x1106
Headset 0x1108
Cordless telephony 0x1109
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Table 7.3 Some Bluetooth attributes

Attribute definition Attribute ID

Service Class ID List 0x0001
Service ID 0x0003

and their identifiers are listed in Table 7.3. These attributes are gathered to service
records that specify the parameters needed for addressing a particular service in
a certain device. There are three different power classes; class 1 is applicable for
ranges up to 10 cm and uses 1 mW power for transmissions, class 2 for ranges up to
10 m and 2.5 mW, and class 3 for ranges up to 100 m using 100 mW. Obviously,
class 2 is the most commonly used in mobile devices. Let us next consider the
particularities of implementing applications using Bluetooth as the communication
technique.

Bluetooth applications need not obey any particular application model, but they
are usually based on the client–server paradigm, where the user of the service
acts as the client and the provider as the server because of the forced asymmetric
discovery of services. Moreover, there are restrictions on how Bluetooth-connected
networks, so-called piconets, can be formed. For instance, there is a maximum of
eight (one master and seven slaves) stations involved in one piconet. In addition,
piconets can merge into scatternets, where a number of piconets can be involved.
This, however, does not seem to be too common a use for the technology.

Bluetooth service lookup is based on device inquiry and a service discovery
protocol SDP. It is used to locate devices that have their Bluetooth connection
enabled (inquiry) and the services they offer (discovery). Device identity is based
on a 48-bit Bluetooth address that uniquely identifies the device. As for services,
the device that offers services for other devices has a special database that is used
for registering services for others to discover.

Once a Bluetooth service has been selected, it can be contacted as if a serial
port was used using RFCOMM protocol. On top of the serial port, it is possible
to implement an application-specific protocol, or use standard protocols defined
in Bluetooth profiles, which effectively define standard protocols for certain use
cases. In practice, many applications that rely on Bluetooth use TCP/IP or UDP/IP
socket communication due to their relative simplicity, which is also the approach
introduced in the context of composing applications for mobile devices by Jip-
ping (2002), for instance. In addition, more complex protocols, such as OBEX,
introduced for exchanging objects, have been introduced, and they can be used for
implementing higher-level operations that are suited for the underlying model of
interaction. Furthermore, also additional features, such as AT commands for using
a modem, have been introduced on top of the core technology.
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7.5.2 Bluetooth in Symbian

Using Bluetooth in the Symbian environment requires several components. Firstly,
a service database is used into which services can be registered so that other devices
can query for them. Second, service discovery protocol SDP is used to discover the
services. Finally, when a service has been found, it can be used. We will address
these issues in the following.

Service Database

Offering Bluetooth services is based on a service discovery database that contains
information that the device provides to others. When a device wishes to offer ser-
vices, corresponding service records are added to the database using database server
API. Methods are included for establishing a connection and closing it, querying
version information, and for enabling counting of established connections.

The actual service database is characterized by class RSdpDatabase, where
methods called CreateServiceRecordL and DeleteServiceRecordL are for
creation and removal of service records in the service database. In addition, two
methods called UpdateAttributeL and DeleteAttributeL have been pro-
vided for manipulating individual service attributes in a record. The creation of
a database entry is illustrated in Figure 7.3, where four UpdateAttributeL calls
are used. They include a protocol descriptor list, which is a data structure used
to define protocol-related information, and service id, service name, and service
description.

CBTApp RSdp RSpdDatabase

Connect()

Open()

CreateServiceRecordL()

UpdateAttributeL()

UpdateAttributeL()

UpdateAttributeL()

UpdateAttributeL()

Figure 7.3 Bluetooth service record creation
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Service Discovery

Bluetooth service discovery in Symbian OS is based on service discovery agent,
CSdpAgent. When used, a service agent needs an object that is responsible for
implementing interface MSdpAgentNotifier to be activated as the service dis-
covery progresses. Callback method NextRecordRequestComplete is called
when the latest request for a matching service search is complete. A handle
received as a parameter can then be used for querying attributes. These results
are then returned by AttributeRequestResult, and the completion status by
AttributeRequestComplete. An agent can use a search pattern to find service
identifiers. This is implemented with class CSdpSearchPattern, whose methods
enable introduction or removal of service identifiers. With these facilities, a sample
query for services would then be implemented as follows.

1. Create a notifier. This must be a class derived from MSdpAgentNotifier, and
it must override the pure virtual methods discussed above.

2. Create an instance of class CSdpAgent.
3. Create a search pattern and add the service definitions that are to be discovered.
4. Install the search pattern in the agent with method SetRecordFilterL.
5. Signal the agent to start the search process by calling NextRecordRequest

method.
6. Control will be dispatched to the Symbian Bluetooth framework that will activate

associated callbacks.

Once service records have been found, attributes in them can be requested from
the database using class CSdpAttIdMatchList, whose methods resemble those of
service discovery (for instance AddL, RemoveL, and Find). The procedure to query
for attributes is carried out as follows, assuming that the execution of the operation
has proceeded to a point where notifier’s method NextRecordRequestComplete
signifies the service that was found.

1. Create a CSdpAttrIdMatchList object, which we will refer to as attribute
pattern.

2. Add attribute identifiers to the attribute pattern.
3. Start attribute search using AttributeRequest.
4. Control is again dispatched to the Bluetooth framework. For every

attribute found, AttributeRequestResult is called. When no more
attributes that match the search pattern are found, callback method
AttributeRequestComplete is called.

The execution of the service discovery process is illustrated in Figure 7.4, assum-
ing that the right device has been selected and its address can be given as the
parameter, and the associated search pattern has already been composed and
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Framework CBTApp CSdpAgent

NewL()

SetRecordFilterL()

ListServicesL()

NextRecordRequestL()
NextRecordRequestComplete()

AttributeRequestL()
AttributeRequestResult()

AttributeRequestComplete()
NextRecordRequestL()

. . . 

Figure 7.4 Bluetooth service discovery

it is passed as a parameter in method SetRecordFilterL. As shown, call-
back methods NextRecordRequestComplete, AttributeRequestResult, and
AttributeRequestComplete are used to activate application code when com-
munication has been completed.

Payload Communications

As there are several protocols that can be run on top of a Bluetooth connection,
several procedures can be used. As an example, we discuss a primitive form of
using a Bluetooth service, sockets. When composing such a program, one must
connect to a Socket server and load the Bluetooth drivers. Following the guidelines
of Jipping (2002), for instance, this can be implemented as follows:

result = StartC32(); // Start comm server if needed.
if (result != KErrNone && result != KErrAlreadyExists)

User::Leave(result);

result = socksvr.Connect(); // Connect to socket server.
if (result != KErrNone) User::Leave(result);

// Load protocol.
result = socksvr.FindProtocol(_L("BtLinkManager"),

protocolInfo);
if (result != KErrNone) User::Leave(result);

Opening and configuring a Bluetooth socket is similar to that of other sock-
ets. Clients can connect to sockets using RSocket::Connect method, which
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requires a valid address and service specification to which to connect the socket.
This can take several forms, depending on the format in which the address is
given (TBTSockAddr, TInquirySockAddr, or protocol-specific address). Finally,
receivers of Bluetooth sockets must first bind an opened socket to a local address,
then set up a listening queue for that socket, and finally open a new socket to con-
nect to an incoming connection. To receive a connection, the service must call the
listening socket’s Accept method with a new socket, When Accept returns, the
socket will be defined, and the two endpoints will have a data channel over which
they can communicate. Closing a socket is performed by stopping the I/O requests
associated with the socket, and shutting down first the socket and then the server.

7.6 Summary

• Network resources form another layer of facilities and resources for applica-
tions.

• Longish travel-through times due to complex network infrastructure and prop-
erties of wireless connectivity when using cellular protocols.

• Due to the restrictions of computer-like communications and messaging, some
applications require both types of facilities to be used for best user experience.

• A common implementation of a networking application requires a resource
manager, which handles both events originating from the network as well as
those requested by the device. This resource manager effectively acts as an
event handler not unlike those used for resources located in the device. In
practice, this can be a thread or an active object.

• A key design decision is whether an application is stateless or stateful.

– Stateless applications can be easier to use and compose, but transactions can
require additional data elements.

– Stateful applications may require less data communications, but can be harder
to use and compose.

• Sophisticated communication facilities are offered by both MIDP Java and
Symbian OS. In practice, designers often select the solutions that are best suited
for the larger-scale good, not those that are optimal for mobile devices only.

7.7 Exercises

1. How should messaging and computer-like communications be used for the defi-
nition of an email system? What choices should the user be allowed to make in
order to save battery? What choices require data in the server and what in the
client end of the system?

2. Consider a system where the user’s home computer is connected to the Internet
using a broadband connection, and the computer does the actual browsing. When
the user browses the Internet with a phone, the communication is always directed
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to the home computer, which then interacts with other computers. When the home
computer receives a reply to its query, it converts the resulting Web page to a
JPEG and a collection of links. How much bandwidth can be saved in wireless
communications using this approach?

3. Sketch an application that benefits from the concept of a location. What kinds
of requirements does the application have on accuracy of the information? How
about the performance, i.e., how fast should location data be available? How
much data should be associated with a given location?

4. Study Symbian OS Bluetooth facilities. What kind of an API could be introduced
to simplify the use of Bluetooth for client–server applications?

5. How should active objects be used in a Symbian implementation of a networking
application to avoid two-thread pattern?

6. How should a networking application be designed in order to enable a system
where one device would act as a host and others would use its services?

7. How would you compose a system where long-lasting operations, like sending
an MMS, do not block user activity? Compare possible MIDP Java and Symbian
OS implementations.
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Security

8.1 Overview

In the PC and Internet environment, security-related issues are gaining more and
more attention. Viruses and spam email have become a constantly worsening prob-
lem requiring user attention in the form of continuous loading of upgrades and
updating spam filters, for instance. In addition to losing information, one can also
lose money due to rerouted modem connections, for instance. As a solution, one
must install firewalls and virus protection software to protect the computer.

For mobile devices, the cost of using a connection is well beyond that of a fixed
Internet connection, at least potentially. Moreover, network operators and device
manufacturers play a stronger role in the mobile setting than has been commonly
assumed with the PC environment and fixed Internet connections. As a consequence,
this has led to more elaborate mechanisms for security, where applications can have
a wide range of rights to access system resources and privileges of the user can be
restricted.

Fundamentally, the purpose of security features is to prevent unauthorized access
to data and the features of the device and the introduction of superfluous costs or
downgrading the resources. For resources that are accessed using network connec-
tions, a trustworthy implementation should be secure. This can be handled with the
same encryption protocols that are used in fixed networking, and we will omit such
issues for brevity.

For the resources that are located in the device, access means that interfaces
are provided for addressing the data. The definition of resources, as well as the
ways to stop unauthorized access, then becomes the important issue, as spyware
and viruses can mask themselves as useful programs. Because applications can
have different levels of trust depending for instance on their origin – manufacturer
installed applications can be considered more trustworthy than those installed over
Bluetooth by an unknown party – the traditional approach, where user identity is
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used for determining whether or not some right is granted, is not adequate. Instead,
it makes more sense to use other means based on rights granted to applications.

Software security can be considered using different scopes. One scope is con-
struction time, where the design of the system occurs in the first place. In this
case developers will be responsible for making secure, or security-enabling, design
decisions. Another scope is the development and deployment of software for a
system where a number of security measures have already been implemented. In
the following, we first address generic design practices that aim at the develop-
ment of secure software. Then, we will discuss the required security infrastruc-
ture and the types of operations that will be performed. Towards the end of the
chapter we will discuss security infrastructure in terms of MIDP Java and Sym-
bian OS.

8.2 Secure Coding and Design

Secure coding and design has been gaining a lot of interest over recent years.
Motivated by security problems of existing systems, groundwork for composing
secure systems has been introduced, including in particular the work of Graff and
van Wyk (2003) and Yoder and Barcalow (1997).

8.2.1 Mindset for Secure Design

Graff and van Wyk (2003) propose the following process for designing a secure
software system:

1. Assess the risks and threats. What are the bad things that might happen, and
what are the legal and regulatory requirements?

2. Adopt a risk mitigation strategy. Plan in advance how to manage the risks iden-
tified above.

3. Construct a mental model to support the development. For instance, one can con-
sider analogies such as sandbox, jail, safe, or honeypot to facilitate development.

4. Settle high-level technical issues (for instance stateless vs. stateful, use of privi-
leges, etc.). The definition of the behavior of the system at an abstract level.

5. Select suitable security techniques to satisfy the requirements. What particular
techniques and technologies are to be used.

6. Resolve operational issues. Such issues may include, for instance, synchroniza-
tion or application-level communication encryption.

Furthermore, Graff and van Wyk (2003) propose that security should be engineered
in the system starting at the beginning of the development. The rationale is that
later on it is difficult to introduce security measures that would cover the whole
system to the fullest extent. In addition, one should design for simplicity even
when attacking a complex problem of security. The more complexity one puts into
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a design, the harder it is to validate its appropriateness, not to mention the likelihood
of programming and design flaws.

As with any design, it is not only the technical artefact that counts but also
its validation. Similarly to testing that can be characterized as showing that the
program works, which can be considered to produce relatively few errors, or as
the process of finding the hidden problems in a program, which focuses on finding
the bugs (Myers et al. 2004), the validation of security properties also requires a
special attitude. The assumption is that there are security holes in the system, and
it is up to the validation and verification personnel to find them. Finding bugs and
problems in the development should be a positive event (Graff and van Wyk 2003;
Whittaker and Thompson 2003).

8.2.2 Sample Security-Related Design Patterns

As security can be considered a quality requirement, having no single responsible
component, its implementation often requires architecture- and design-level mea-
sures. In the following, we introduce some design patterns that according to Graff
and van Wyk (2003), Whittaker and Thompson (2003), and Yoder and Barcalow
(1997) can be used as elements of security.

Role-based Security. The purpose of role-based security is based on using roles as
the basis for privileges. For instance, users can assume several roles, like superuser,
user, guest, depending on their intentions. Moreover, it is possible to also associate
privileges with other facilities than user. For instance, giving certain privileges to
applications or installation packages, it is possible to rely on roles. In reality, most
devices implement two different roles. One is unidentified role that basically allows
one to make an emergency call. The other is the normal user privileges, which
grant access to all the resources of the phone and for instance in Finland require a
PIN code from the user. Moreover, it is possible to require additional identification
when performing some operations, such as resetting the phone to factory settings.
In the future, it is possible that additional roles will be introduced. For instance,
being able to define a role for device management that would allow centralized
management of all additional software of the phone could lead to more elaborate
use of mobile devices in corporations. Currently, this is made difficult by the fact
that the users can always override corporate information management’s effort and
installations. In addition, platforms can offer different capabilities to applications
running in them, which makes applications role-enabled entities. We will return to
this topic towards the end of the chapter.

Checkpoint. In analogy to military installations, a checkpoint is a particular loca-
tion in a design that is used to check whether or not an access or an operation is
allowed or should be interrupted. In software design, this can be interpreted to mean
that all data related to authorization and identity checking, for instance, is encap-
sulated in one object. Obviously, there can be different types of checkpoints for
different purposes, following the plugin principles for specialization. For instance,
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one type of checkpoint can be used for authenticating a user, and another type
of checkpoint may be necessary for loading a dynamic library. A third use would
be the check where the authority for the installation of an application is granted.
However, there should be only one way to accomplish the operations, i.e., in all
cases where user authentication is needed, the same mechanism is used, all loading
of dynamic libraries is performed using the same procedure, and there is no other
way to install an application but the application installer must always be used. For
instance, MIDP Java’s restrictions on using user-defined class loaders discussed
earlier can be considered as an instance of this pattern. One more issue related to
using checkpoints is whether separate programs are used for validation, meaning
that validation is specific to some particular part of the system, or if validation is
based on declarative issues associated with all program, in which case it is easier
to modularize and change.

Layered Security for Communication. The purpose of layered security for com-
munication is to guide the designer to implement layers of security for all layers
of communication instead of addressing all security in a single security model.
In many cases, it is enough to implement an application-specific security layer,
because existing components exist for lower-level protocols. For instance, when
implementing a networking application, it is likely that the underlying networking
subsystem and database introduce some security mechanism of their own. However,
if no such libraries are available, one should be encouraged to build security systems
for the different layers separately, as the design and verification of all the layers
separately is usually easier than creating a single module that is responsible for all
security features. Moreover, also the general principles of separation of concerns
are better served in this design, contributing to easier maintenance. Obviously, a
high-level secure access layer in and out of the application is needed in order to
allow it to exchange information with its environment. Still, before implementing
this layer, one should consider whether or not application-level communication must
be secured, or if encryption at lower-level communication already ensures privacy
to the desired degree.

Limited View or Full View with Errors. A design issue not directly associated
with security, but bearing some consequences to it, is how much of a system is
revealed to its clients. In particular, are only the operations that are offered to a
certain client at a particular time revealed, or are all the operations always visible?
Limited view to a system is based on showing only operations that are enabled for
a client in a particular case. For instance, the user interface of an application may
only show actions that are currently available for this particular user, taking the state
of the system into account. From the performance point of view, the application
of this design solution can be problematic, because in principle all the data that is
not the same in all situations for all users must be produced by automatic gener-
ation. However, no information on existing but currently inaccessible properties is
revealed. In contrast to limited view, full view with errors is based on revealing all
the possible operations that a system enables, disregarding whether or not they can
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or are authorized to be executed in the current situation. Then, it is a responsibility
of the client to recover from the error, and act accordingly. While the performance
of this approach is usually better than that of the limited view pattern, making also
confidential operations visible enables a hostile client to attack the operations more
directly than if their details are not known.

Wrapping. While commonly associated with the role as an adaptor, wrappers can
also be used as a security mechanism, as pointed out by Graff and van Wyk (2003).
Obviously, depending on the options offered by the underlying system, wrappers
can become very complex entities that perform a number of operations on behalf
of the actual system. When using wrapping, there are a number of security-related
aspects that can be taken into account before performing the actual call to the
original component. Sample additional measures include the following:

• Sanity checking of parameters to guard against buffer overflows and parsing error
attacks.

• The option to create a more restricted run-time environment in order to host the
execution in less capable mode.

• Starting the system for the first time, allowing the wrapper to perform some extra
activities related to security and other matters.

• Logging information.
• Adding pre-execution or post-execution code to the system.
• Intercepting the startup of an application.

8.3 Infrastructure for Enabling Secured Execution
In addition to designers, also other stakeholders are associated with security features,
including users, network operators, and content providers and distributors. To them,
the goal is not to design systems in a secure manner, but to introduce software that
uses the available facilities in accordance to in-built security concepts.

8.3.1 Goals for Security Features

In the following, we discuss the different goals that are to be achieved with secu-
rity features. The goals we will be looking at include confidentiality, integrity,
authentication, authorization, and non-repudiation.

Confidentiality. Confidentiality is about what can be read. Confidentiality can
be achieved by cryptographically transforming the original data into a form that
cannot be read before retransformation back to the original form. Both operations
are realized with a parameterized transformation, where the parameter, referred to
as the key, is kept a secret. Transformations are commonly referred to as encryption
and decryption. Depending if the key is the same or different, the terms symmetric
and asymmetric are used. The biggest benefit of the latter is that one key can be
made public. Then, one can preserve the ability to generate protected content with
private key, and allow others to decrypt it with public key. Confidentiality becomes
an issue at least in the following use cases:
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• Download and installation. Downloaded applications may be something that are
not to be revealed to others. Furthermore, further distribution of downloaded
applications may be something that must be disabled.

• Communication. For obvious reasons, any communication that is performed
should remain confidential, or at very least, there should be a mechanism to
enable this when needed.

• User and application data. Confidential information in the device should not be
exposed. For example, certain files can be hidden from the rest of the system,
so that they cannot be accessed by other applications. Implementing this requires
support from the underlying operating system. However, if no such support is
provided, the application can internally use encryption to achieve confidentiality.

Integrity. The goal of integrity is to keep information intact. This can be achieved
with cryptographic transforms and an associated key, together with some extra
text to verify the integrity of the original text. Often, symmetric encryption and
decryption, or simple checksums, depending on the case, are used. Integrity may
become important in the following use cases in mobile devices:

• Download, installation, and startup. When a new application is loaded to a device,
it seems rational to be able to check its integrity. Similarly, when an application
is launched, its integrity can be checked to prevent tampering. For instance,
checksums can be used as means of implementation.

• Communication. In order to ensure that communication has been completed in
certain cases that bear transactional nature, integrity of communication packets
can be validated.

• Run-time executables. When loading a piece of code from mass media to the
device’s memory for execution, its integrity can be validated to protect against
tempering. Again, checksums and digital signing can be used.

• User and application data. Data integrity should also be protected in the device.

Authentication. Authentication is about an actor (the claimant) convincing another
actor (the verifier) of its identity. Digital signatures based on asymmetric transfor-
mations are commonly used for this purpose. Authentication can be considered at
least in the following cases:

• Access to resources. It may be a necessity to authenticate before the resources of
a phone can be used.

• Download and installation. Incorporation of new software can require authenti-
cation to ensure that no software from an unknown source is installed.

Authorization. While often mixed with authentication, authorization is not about
convincing the identity but getting permission to act. In many practical cases,
authorization is associated to authentication, as with authentication it is possible
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to identify who gets the authority to perform some operations. As a result, imple-
mentation techniques are similar, and the following cases can be listed:

• Access to resources. After authentication, authority to use some resources can
be granted. In many cases, this case is closely related to the right to use the
device. For instance, authentication of SIM is commonly required before a user
is authorized to access the operator’s radio network. Also other facilities of the
device can be protected in a similar fashion.

• Download and installation. Again, upon authentication, the authority is granted.

Non-repudiation. The purpose of non-repudiation is to ensure that it is impossible
to deny certain actions afterwards, commonly using a combination of implementa-
tion techniques discussed above. Non-repudiation can be considered in the following
cases:

• Download and installation. For downloads that result in billing, sufficient evi-
dence of non-repudiation must be provided. However, these features are not
implemented in the mobile device but in the server that enables the download.
Non-repudiation may also be a necessity to perform for reasons related to war-
ranty of the device; if one installs an application that has not been signed by
a trustworthy third-party developers, changes in the terms of the warranty can
be implied. Similarly, license managing software probably needs some kind of
facilities for non-repudiation.

• Access to resources. Any action that can cause costs to the customer is at least
potentially something that should be non-repudiatable.

For further discussion, the reader is referred to Gehrmann and Stahl (2006) and
McGovern et al. (2006). Next, we introduce some practical facilities to achieve the
above.

8.3.2 Supporting Hardware and Software Facilities

While in principle, one could assume an all-software implementation for security
mechanisms, hardware can, and often should, play an important role. The reason
is that if all the keys used in the cryptographic operations are stored in software,
they could be tampered with by a malicious software. Moreover, when taking into
account that security features are almost always an overhead from the user per-
spective – the user is more interested in getting an application running than for
instance in associated digital rights management – using hardware acceleration can
be considered a practical option.

As an example, Gehrmann and Stahl (2006) introduce an architecture based
on cooperating hardware and software components for security purposes, which
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is targeted to mobile devices. The included security functions are listed in the
following.

• Secure boot and software integrity check. The function is based on using a
checking method stored into one-time programmable memory, which performs an
integrity check when data and programs are loaded from flash. For more complex
operators, also full installation integrity check is possible. Figure 8.1 illustrates
how this can be performed.

• Secure control of debug and trace capabilities.
• Digital rights management. When new applications are installed in the device,

their origins are authenticated, assuming that they will receive access to confi-
dential parts of the device.

• IMEI protection and SIM lock, as one would expect. Maintaining this information
in application software could more easily lead to malicious software accessing
the data in an unauthorized fashion.

• Hardware cryptographic accelerators.
• Hardware-based random number generator.
• Cryptographic algorithm service.
• Public key infrastructure (PKI) support.
• Secure communication protocols, including GSM/GPRS/WCDMA security,

TLS/SSL, IPsec, and Bluetooth/WLAN.

Access CPU Application CPU Flash

Read minimal functions from
one-time-programmable ROM

Get static data

Check data integrity

Get and install app. bootstrap

Check app bootstrap integrity Check app bootstrap

Start app bootstrap

Get access bootstrapInstall access bootstrap

Check access bootstrap

Start access bootstrap

Get access softwareInstall access software

Check access software

Get and install app. software

Check app software integrity Check app software

integrity ok

integrity ok

integrity ok

integrity ok

Normal start of access software Normal start of app software

Static data

App
bootstrap

Access
bootstrap

Access
software

App
software

Figure 8.1 Secure initialization sequence
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Gehrmann and Stahl (2006) also give an extended discussion on each of the func-
tions, which explains the goals behind including this set of functions in the platform.
Furthermore, the importance of trusted applications is highlighted.

8.4 Security Features in MIDP Java
Security features in MIDP Java have been divided to three categories. These cate-
gories, referred to as:

• low-level security,
• application-level security, and
• end-to-end security

are discussed in more detail in the following in dedicated subsections. Towards the
end of the section, we also address problems associated with this design.

8.4.1 Low-Level Security

The main purpose of low-level security in Java is to protect the virtual machine
by ensuring that no execution will interfere with the virtual machine. In common
Java, this corresponds to class file verification, which is a computationally heavy
operation to perform.

In CLDC-based Java where resources are scarce, this scheme has been simplified
by including additional information, which assists in the verification process, in
the generated Java archive by the development workstation. As a result, a new
preverification phase has been added to the Java development workflow (Figure 8.2)
in order to ease the processing of an application when the application is loaded.

Development workstation

MyApp.java

javac

MyApp.class

preverifier

MyApp.class

Target device 
(KVM runtime)

runtime verifier

interpreter

download

Figure 8.2 MIDP Java development workflow

TEAM LinG



206 Programming Mobile Devices

When the virtual machine starts to load an application, the machine verifies the
application using included additional data as assistance, and in case of problems
abandons it.

8.4.2 Application-Level Security

Application-level security features of MIDP Java are based on the so-called sandbox
security model. The model provides a good analogy for considering the security
strategy. The goal is to keep the introduced software in sandboxes of their own, so
that they will not interfere with each other’s behavior.

In terms of an implementation, the sandbox approach of MIDP Java implies the
following properties:

• Class files include standard Java applications that have been verified.
• A well-defined set of interfaces is offered to the developer, and the developer

cannot introduce additional interfaces. Furthermore, extending these interfaces is
forbidden.

• New application loading and management is handled by the virtual machine.
Therefore, user-defined class loaders are forbidden, and there is only one, prede-
fined way to load applications.

• Hardware and host platform features can be accessed only via the virtual machine
and predefined interfaces. Changing these interfaces is forbidden.

• By default, applications can only load files from their own JAR file, and access
resources from their own midlet package.

In practice, the above requires that all applications are run in separate virtual
machines, or that the virtual machine implementation is such that it can handle
the execution of different applications in a fashion where applications are granted
to be isolated from one another. The latter results in a more complex implementa-
tion, and therefore many mobile devices only allow one Java application to be run
at a time to avoid the instantiation of multiple virtual machines.

As the practical unit of security, MIDP Java relies on midlet suites. Applications
are allowed to share resources with other applications that reside in the same suite,
and user-defined libraries are enabled only for those applications that are located
in the same suite. Moreover, also a record management system has been defined
such that a separate set of records is offered to applications that are located in
different midlet suites, whereas midlets in the same suite share files. As a result,
a file named similarly refers to different files when the applications referring to it
are located in different suites, but to the same file if midlets are in the same suite.
Moreover, only controlled access to external resources is granted using operation
getResourceAsStream. The situation is illustrated in Figure 8.3.

As already discussed, MIDP 2.0 introduces improved facilities for accessing
devices’ resources. The standard can be seen to define four levels of overlapping

TEAM LinG



Security 207

JAR File (class file)

MIDlet 1 MIDlet 2
Non-class access

getResorceAsStream()
including JAR manifest

RMS

RMS1

RMS2

Non-class access using 
getResorceAsStream

including
application descriptor file

Figure 8.3 Midlet suite as a sandbox

sandboxes, and each of these levels can offer different privileges. These levels are
the following:

1. Device manufacturer is usually granted all privileges to use the system, although
there can be some operator-specific properties that should not be overridden by
the manufacturer.

2. Operator role is similar to the device manufacturer, but this time manufacturer-
specific properties should not be accessible.

3. Trusted third party can be granted access to the parts of the system that should
not remain private for the device manufacturer or the operator.

4. Untrusted party only gets limited access to the facilities of the device. An imple-
mentation can be given where the user is asked for permission to perform an
operation that is not directly authorized for the application, but which the appli-
cation needs.

The author of a piece of software can be verified to belong to one of the above
groups using certificates. Therefore, it is possible for the user to ensure the origins
of the application. Moreover, when an application wishes to use resources it is not
authorized to use, the device is allowed to ask for the authorization of the operation
from the user. This allows the development of versatile applications even if all the
certificates were not available.

As already discussed, no Java native interface is provided. Therefore, there is
no way to circumvent the sandbox from Java applications. However, assuming that
some software can be added to the native side of the hosting device, some ‘opening’
of the sandbox can be implemented.
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8.4.3 End-to-End Security

End-to-end security means the way in which a networking application is imple-
mented in a secure fashion, and it can be considered as an issue that does not
fall within the scope of the security model of a software platform. Therefore,
early versions of mobile Java leave the implementation of such a feature under
the responsibility of the programmer.

Still, while no generic software architecture is provided, several facilities are
offered for easing the development of secure end-to-end applications. Therefore,
later versions of the standard also include interfaces for using HTTPS and SSL as
well as other expected security-related communication features.

8.4.4 Problems

One commonly addressed issue regarding mobile Java and its security mechanism is
that a number of important parts of the device are beyond the reach of applications.
At first, this does not seem to be too essential a restriction, but as pointed out by
Spolsky (2004), it is usually the data that is essential in a mobile device, and if no
access is provided to it, developing of interesting personal applications is difficult.
Although the situation has been changing due to the introduction of more liberal
security schemes, it can be complicated to compose programs that address user data
and are still portable across different devices. Moreover, although the user can often
confirm an access also to restricted interfaces, constant authorization of execution
can become frustrating.

Testing can also be considered problematic. In order to run as the final appli-
cation, the system under test should behave similarly to it in all ways. However,
assuming that the final application must be cryptographically signed to enable the
verification and validation of its origins, it is only natural that at least some of the
tests require a certified version of the application. This can lead to additional costs
to acquire the certificate for the application as well as be slow if some other party
performs the generation of the certificate. Furthermore, also minor bug fixes lead to
new certificate generation, with similar downsides. Also, subcontracting for a main
contractor that will have a fundamentally more permissive role can be complicated
until the software nears completion.

A further problem is related to the control of programs and their distribution. For
instance, assuming that an operator provides a mobile device, it is possible that also
some restrictions on what software can be used on the device are introduced. This in
turn reduces possibilities of implementing software that can be deployed in all phones.

8.5 Symbian OS Security Features
The way in which security has been incorporated in the Symbian platform has
evolved over the years. The current set of security features includes run-time security
in the form of capability-based platform security, checks that are performed at

TEAM LinG



Security 209

installation time, and facilities for performing secure communications. For clarity,
we use the same grouping as with Java to discuss them, although no such grouping
is explicitly mentioned in connection with Symbian OS.

8.5.1 Low-Level Security

Low-level security features of Symbian OS are not unlike those in many other
computing systems. The underlying infrastructure protects different processes from
each other using memory protection offered by the underlying hardware. Further-
more, the kernel is also protected from user programs, and they can only access the
kernel’s resources via a well-defined interface. In addition, some limits on memory
consumption on stack and heap as well as on thread usage have been set to protect
the system against malicious applications that may attack the system by reserving
resources they are not planning to release.

Some run-time security features have also been defined, which are hard to cat-
egorize either as application-level or as low-level security features. However, they
are related to the concept of platform security, which has been introduced as an
application-level security mechanism, which we will address next.

8.5.2 Application-Level Security

A capability-based security scheme called platform security is a recently introduced
Symbian OS facility. It has been introduced in order to allow fine-grained access to
resources at run-time (Heath 2006; Shackman 2005a). In this scheme, the system
is decomposed into security layers that have different capabilities, which give them
a privilege to perform certain actions.

While the security layers of Symbian are not solely related to application-level
security only but are used as a means for end-to-end security, the layers form an
integral concept. Therefore, we treat then as one entity and do not distribute their
effect to different levels of abstraction. The layers are characterized in the following:

• High-level applications are built on top of provided secure facilities.
• Trusted environment (TE) enables the use of communications, user interface,

database, and security libraries in a reliable fashion.
• Trusted computing base (TCB) enables safe saving of data as well as facilities for

identifying and authorizing software. In addition, this level also includes the hard-
ware environment, although it is discussed separately. The different components
of TCB automatically trust each other.

• Trusted hardware base (THB) enables safe initialization and execution of appli-
cations as well as secured hardware services.

In terms of an implementation, the ability to use the services of some other
software artifacts is based on capabilities. It is the capabilities that form the basis
for checking that permission to use services is given, and on top of which the
above layering is implemented. Capabilities are given such that all the processes

TEAM LinG



210 Programming Mobile Devices

get minimum capabilities for implementing the tasks they are responsible for. In
other words, the capability model can be interpreted such that capabilities define
the extent to which a process is authorized to use the features of the system.

Several capabilities have been introduced. Some of the most important ones,
together with identification on whether they are intended for system- or user-level
functions, have been listed in Table 8.1. In addition to these technical artifacts, a
number of processes have been defined for enabling security. These include authenti-
cation and certification processes and device management processes, to name a few.

The design principle that Symbian security features follow is that all processes
have their own security level. In this scheme, processes that have high security
requirements are usually those that are vital for the operating system, and less
restricted security requirements are set to those parts of the system that can be
added to the system by external parties later on. In addition, a small number of
intermediate levels have been defined.

The implementation of the capability model is based on checking the capabilities
when loading a dynamically linked library to a process or when contacting another
process. For instance, consider the following cases. If a process with capability
A dynamically loads a library that has capabilities A and B, the library code will
be executed with capability A. However, if the library only contains capability B,

Table 8.1 Some common capabilities

System Manufacturer TCB
capabilities set AllFiles

CommDD

PowerMgmt
System Extended MultimediaDD

capabilities set ReadDeviceData
WriteDeviceData
ProtServ
Network Control
DRM
SurroundingsDD

LocalServices
User Basic UserEnvironment

capabilities set ReadUserData
WriteUserData
Location
Network Services

User Other Non-classified APIs
capabilities

TEAM LinG



Security 211

Executable
Capability A

DLL
Capabilities A and B

load

Executable
Capability A

DLL run with 
Capability A

Executable requiring 
Capability B 

for IPC
IllegalI
PC call

Executable 1 Executable 2

Process boundary

Figure 8.4 Inter-process communication and capabilities

loading will fail. Similarly, process communication can only be enabled if the capa-
bilities match, which can sometimes lead to confusing errors. For instance, consider
the case illustrated in Figure 8.4. Assuming that a DLL can be used in processes
having capabilities A and B, but requires services from a process that has only capa-
bility B, executions where the DLL is loaded by processes having only capability
A lead to failure. Because processes may require the use of certain capabilities,
even if a DLL would in principle be able to communicate with some other pro-
cess, inter-process communication may fail if the original process does not have the
right capabilities. The effect of capabilities can be managed with general security
settings when building ROM images. For instance certain (or all) capabilities can
be automatically granted, or failed capability checks can be reported.

In addition to run-time security based on capabilities, some data-security-related
features have been implemented. In particular, disk locations can be made private.
As a result, directories can be made private to applications, which can then store
their private data in them. Furthermore, application binaries are not visible to other
applications. At the level of implementation, this has been implemented in terms
of capability-based security. Capability to access an application’s private data is
granted to a minimal number of features. For instance the file server can manage
applications’ file use, and kernel, installer, and file server can access all executables.

8.5.3 End-to-End Security

When installing applications to a Symbian device, checks are performed that authen-
ticate the application. However, even if the application cannot be authenticated, the
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user has been able to authorize the installation. However, since the introduction of
capability-based security, only a limited authorization will be enabled. In other words,
there are cases where composing a program for personal use becomes impossible
without access to a suitable authorizing signing program, such as Symbian Signed.

Communication time security in Symbian can be based on the layered security
scheme, although this is by no means enforced. The platform offers a number of
secure protocols from which a suitable set can be picked. However, it is also possible
to introduce application-specific crypting if necessary. Using this alternative is up
to the designer.

8.5.4 Problems with Symbian OS Security Features

The most obvious problem associated with Symbian OS security features is the
same as with mobile Java: restricted access to the system’s resources can be demo-
tivating for application developers. Further concerns can be raised on the future of
application distribution and testing of applications at development time, which may
require certification before an application can be tested.

A technical challenge associated with security features in Symbian is more com-
plex testing. Because all interfaces are extended with capability definitions, integra-
tion testing gets a new dimension where the compatibility of different configurations
of dynamically linked libraries in different executables is addressed. Moreover, mea-
suring the coverage of such testing is hard, since if only code coverage is measured,
it is possible that some combinations of different capabilities are overlooked.

8.6 Summary

• Security takes place at several levels of abstraction in mobile devices, including
at least network communications, device’s resources and data, and internally run
programs.

• Install and run-time security features are commonly introduced to protect the
device. Certificates can be used for verifying the author and the origins of a
piece of software.

• Generic security patterns have been introduced, including for instance role-based
security, checkpoint, layered security for communications, and wrapping.

• Several security schemes have been implemented in practice. As examples, we
addressed two implementations.

– MIDP Java application-level security is based on the sandbox model.
– Symbian OS platform security relies on the use of capabilities that are related

to provided privileges.

Both schemes can be considered beneficial, as in principle they allow controlling
the distribution of applications. On the downside, it is also possible to misuse
this capability.
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8.7 Exercises

1. Consider a license manager software that manages application licenses and
transactions taken for paying the costs associated with the download and instal-
lation of applications. What kind of an architecture would be appropriate for
the system? What parts of the system should be implemented as plugins? What
parts of the system should be ciphered in the disk? What kinds of privileges
would the software require in Java and in Symbian OS environments?

2. The current MIDP Java virtual machine runs only one midlet at a time. As a
result, only one midlet at a time is being run in practice due to memory-related
restrictions. What new security features would be needed in order to allow
one virtual machine to run several midlets in parallel? Where would they be
included in a virtual machine implementation?

3. What problems would arise if all software inside a mobile device was imple-
mented with MIPD Java? What types of applications cannot be implemented
due to the use of sandbox security?

4. Many standards require that it must always be possible to establish an emer-
gency call. What kinds of designs would be possible for accomplishing this,
assuming that viruses could downgrade the functions of the device?

5. Consider MIDP Java’s and Symbian OS’s run-time security mechanisms. What
principal differences exist from the developer’s viewpoint? How do these dif-
ferences restrict application development?

6. How do the design of a DLL and a server differ in the Symbian environment
when considering capability-based security?

7. What kinds of features could be implemented using the capability-based security
for device management in the Symbian environment? What kinds of extensions
would this require from the implementation?
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Black K, Currey J, Kangasharju J, Länsiö J and Raatikainen K 2001 Wireless access and terminal
mobility in CORBA White paper, Highlander Engineering, Nokia, University of Helsinki.

Bloch J 2001 Effective Java – Programming Language Guide. Addison Wesley.

Bodic GL 2003 Multimedia Messaging Service: An Engineering Approach to MMS. John Wiley &
Sons, Ltd.

Bosch J 2000 Design and Use of Software Architecture. Adopting and Evolving a Product Line
Approach. Addison-Wesley.

Brown WJ, Malveau RC, McCormick HW and Mowbray TJ 1998 AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis. John Wiley & Sons, Inc.

Buschmann F, Meunier R, Rohnert H, Sommerlad P and Stal M 1996 Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley & Sons, Ltd.

Chakrapani LN, Korkmaz P, III VJM, Palem KV, Puttaswamy K and Wong WF 2001 The emerging
crisis in embedded processors: what can a poor compiler do? CASES’01, pp. 176–181. Georgia,
USA.

Chang LP and Kuo TW 2004 An efficient management scheme for large-scale flash memory storage
systems. The 2004 ACM Symposium on Applied Computing, pp. 862–868. ACM.

Chaoui J, Cyr K, Giacalone JP, de Gregorio S, Masse Y, Muthusamy Y, Spits T, Budagavi M and
Webb J 2002 OMAP: Enabling multimedia applications in third generation (3G) wireless terminals.
Technical Report SWPA001, Texas Instruments.

Chinnici R 2002 Java APIs for XML based RPC Java Specification Request 101.

Clements P and Northrop L 2002 Software Product Lines – Practices and Patterns. Addison Wesley.

Coulouris G, Dollimore J and Kindberg T 2001 Distributed Systems – Concepts and Design. Addison-
Wesley.

Edwards L, Barker R and EMCC Software Ltd 2004 Developing Series 60 Applications. A Guide for
Symbian OS C++ Developers. Addison Wesley.

Ellis J and Young M 2003 J2ME Web Services 1.0 Sun Microsystems.

Programming Mobile Devices: An Introduction for Practitioners Tommi Mikkonen
 2007 John Wiley & Sons, Ltd

TEAM LinG



216 Programming Mobile Devices

Fialli J and Vajjhala S 2006 Java architecture for XML binding Java Specification Request 222.
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